\(x^4+ax^3+bx^2+cx+1=0\) có ít nhất 1 nghiệm thực với a.b là số thự tìm Min \(a^2+b^2\)
Cho phương trình: \(x^4+ax^3+bx^2+cx+1=0\) có nghiệm. Tìm min P=\(a^2+b^2+c^2\)
Oh my!!! Cuối cùng cũng ra!!!
Với mọi \(x\) ta luôn có \(ax^3+bx^2+cx=-1-x^4\).
Áp dụng BĐT Cauchy-Schwarz dạng phân thức ta có:
\(\left(a^2+b^2+c^2\right)\left(x^6+x^4+x^2\right)\ge\left(ax^3+bx^2+cx\right)^2\)
Hay \(P\ge\frac{\left(x^4+1\right)^2}{x^6+x^4+x^2}\).
Đặt \(y=x^2\), ta tìm min\(\frac{y^4+2y^2+1}{y^3+y^2+y}\).
Ta sẽ CM \(\frac{y^4+2y^2+1}{y^3+y^2+y}\ge\frac{4}{3}\) với mọi \(y\) dương.
Biến đổi tương đương ta có: \(\left(y-1\right)^2\left(3y^2+2y+3\right)\ge0\) (đúng).
Vậy \(P\ge\frac{4}{3}\). Đẳng thức xảy ra khi \(a=b=c=-\frac{2}{3}\).
(Bất đẳng thức kiểu này quá khó!)
(x) = x^4 + ax^3 + bx^2 + cx - 1 = 0
lim f(x) (x --> -∞, x --> +∞) = lim x^4*(1 + a/x + b/x^2 + c/x^3 - 1/x^4) = + ∞
=> tồn tại x1 và x2 thỏa mãn x1 < 0 < x2 sao cho f(x1) > 0, f(x2) > 0
ta có f(0) = -1 < 0 => f(x1)*f(0) < 0, f(0)*f(x2) < 0
=> trong (x1, 0) tồn tại x3 và trong (0, x2) tồn tại x4 rằng f(x3) = f(x4) = 0
Đề gì mà tổng quát vậy. Cho hỏi đề có phải như vầy không
\(x^4+ax^3+bx^2+ax+1=0\)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
Cho 3 số thực a,b,c thoả mãn a+b+c=6. CMR ít nhất 1 trong 3 phương trình sau có nghiệm:
(1) \(x^2+ax+1=0\)
(2) \(x^2+bx+1=0\)
(3) \(x^2+cx+1=0\)
SỬ DỤNG VI-ÉT
nếu phương trình x^4+ax^3+bx^2+cx+1=0 . Nếu phương trình này có nghiệm thì giá trị nhỏ nhất của a^2+b^2 là....
Ko thì ko lời giải
\(------------\)
Sai đề hử?
a) Cho đa thức P(x) thỏa mãn : x . P(x + 2 ) = ( x2 - 9 )P(x)
Chứng minh rằng đa thức P(x) có ít nhất 3 nghiệm .
b) Cho đa thức P(x) = ax3 + bx2 + cx + d với P(0) và P(1) là số lẻ . Chứng minh rằng P(x) ko thể có nghiệm là số nguyên .
Thay x = 0 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
0.P( 0 + 2 ) = (4 - 9). P(0) suy ra 5. P(0) = 0 hay P(0) = 0. Vậy x = 0 là nghiệm của đa thức.
Thay x = 3 vào x . P(x + 2 ) = ( x2 - 9 )P(x) ta có:
3.P(5) = (9 - 9 ).P(3) suy ra P(5 ) = 0 . Vậy x = 5 là nghiệm của đa thức P(x).
Tương tự với x = - 3 ta có:
-3. P(-1) = (9 - 9). P(-3) suy ra P(-1) = 0. Vậy x = -1 cũng là nghiệm của đa thức P(x).
Vậy đa thức P(x) có ít nhất 3 nghiệm là: 0; 5; -1.
b, Giả sử P(x) có nghiệm nguyên là a. Khi đó sẽ có đa thức g(x) để: P(x) = g(x) (x - a).
P(1) = (1-a).g(1) là một số lẻ suy ra 1- a là số lẻ .Vậy a chẵn.
P(0) = a .g(0) là một số lẻ , suy ra a là số chẵn.
a không thể vừa là số lẻ, vừa là số chẵn. Ta có mâu thuẫn.
Vậy ta có ĐPCM.
Bùi Thị Vân ơi, khúc đầu câu a) là thay x=0 vài x.P(x+2) = (x^2-9) P(x) mà bạn thay bị sai thì phải.Bạn xem lại giúp mình
Bài 1: Cho đa thức bậc nhất: f(x) = ax + b và g(x) = bx + a (a và b khác 0). Giả sử đa thức f(x) có nghiệm là x0, tìm nghiệm của đa thức g(x)
Bài 2: Chứng tỏ rằng f(x) = -8x4 + 6x3 - 4x2 + 2x - 1 không có nghiệm nguyên.
Bài 3: Cho đa thức f(x) = ax3 + bx2 + cx + d có giá trị nguyên với mọi x thuộc Z. Chứng tỏ rằng 6a và 2b là các số nguyên
cho 3 phương trình
\(\hept{\begin{cases}x^2-ax+1=0\\x^2-bx+1=0\\x^2-cx+1=0\end{cases}}\)
thỏa mãn a+b+c =6 CMR trong 3 phương trình đã cho có ít nhất 1 phương trình có nghiệm phân biệt
Với a = b = c = 2 thì ta có cả 3 phương trình đều có dạng.
\(x^2-2x+1=0\)
\(\Leftrightarrow x=1\)Vậy trong trường hợp này cả 3 phương trình đều chỉ có 1 nghiệm.
Vậy đề bài sai.
Nếu xét các trường hợp khác thì sao alibaba ??
Ta có
\(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\)
\(\ge2\left(a+b+c\right)-15=12-15=-3\)
Chẳng nói lên được gì hết
Cho a,b,c là các số thực thỏa 0<a,b,c<1 cmr: có ít nhất 1 trong 3 phương trình có nghiệm:
ax2 - x +1-b=0(1) bx2 -x +1-b(2) cx2 - x+1-b(3)
Cho 3 số a,b,c thỏa mãn a+b+c=6.
Chứng minh rằng có ít nhất 1 trong 3 phương trình sau có nghiệm:
x2+ax+1=0 (1)
x2+bx+1=0 (2)
x2+cx+1=0 (3)
Cần cm BĐT: với mọi a, b, c ta luôn có \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\)
Ta có \(\Delta_1=a^2-4\) ; \(\Delta_2=b^2-4\) ; \(\Delta_3=c^2-4\)
Do đó \(\Delta_1+\Delta_2+\Delta_3=a^2+b^2+c^2-12\ge\frac{\left(a+b+c\right)^2}{3}-12=\frac{6^2}{3}-12=0\)
Vậy \(\Delta_1+\Delta_2+\Delta_3\ge0\) nên ít nhất phải có \(\Delta_1\ge0\) hoặc \(\Delta_2\ge0\) hoặc \(\Delta_3\ge0\)
(vì nếu cả 3 cái cùng < 0 thì tổng của chúng sẽ < 0)
Điều này chứng tỏ phải có ít nhất 1 pt có nghiệm.