tìm x, y, z biết
e) 2x=3y; 7z = 5y và 3x-7y+5z=30
f)\(\frac{x}{4}=\frac{y}{5}\)và xy=80
g)\(\frac{x+3}{5}=\frac{y-2}{3}=\frac{z-1}{7}\)và 3x+5y-7z=32
h)\(\frac{x}{4}=\frac{y}{3}\)và x2-y2=63
Tìm x,y,z biết:
Tìm x,y,z biết:
a) 7x-2y=5x-3y và 2x+3y=20
b) 2x=3y=4z-2y và x+y+z=45
c) 3x=4y-2x=7z-4y và x+y-2z=10
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
c.
$3x=4y-2x$
$\Rightarrow 5x=4y\Rightarrow x=\frac{4}{5}y$
$3x=7z-4y$
$\Leftrightarrow \frac{12}{5}y=7z-4y$
$\Leftrightarrow \frac{32}{5}y=7z\Rightarrow z=\frac{32}{35}y$
Khi đó:
$x+y-2z=10$
$\frac{4}{5}y+y-2.\frac{32}{35}y=10$
$y.\frac{-1}{35}=10$
$y=-350$
$x=\frac{4}{5}y=\frac{4}{5}.(-350)=-280$
$z=\frac{32}{35}y=\frac{32}{35}.(-350)=-320$
Tìm các số x, y, x biết rằng :
a) 3x = 2y, 7y = 5z, x - y + z = 32
b) x/3 = y/4, y/2 = x/5, 2x -3y + z = 6
c) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
d) x - 1/2 = y - 2/3 = z - 3/4 và 2x + 3y - z =50
e) x/2 = y/3 = z/5 và xyz = 810
a) Ta có: 3x = 2y => \(\frac{x}{2}=\frac{y}{3}\) => \(\frac{x}{10}=\frac{y}{15}\)
7y = 5z => \(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{15}=\frac{z}{21}\)
=> \(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{15}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.15=30\\z=2.21=42\end{cases}}\)
Vậy ...
b) Tương tự câu trên
c) Ta có: \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\) => \(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
=> \(\hept{\begin{cases}\frac{x}{\frac{3}{2}}=12\\\frac{y}{\frac{4}{3}}=12\\\frac{z}{\frac{5}{4}}=12\end{cases}}\) => \(\hept{\begin{cases}x=12\cdot\frac{3}{2}=18\\y=12\cdot\frac{4}{3}=16\\z=12\cdot\frac{5}{4}=15\end{cases}}\)
Vậy ....
d) HD : Ta có: \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\) => \(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
(Sau đó áp dụng t/c của dãy tỉ số bằng nhau rồi làm tương tự như trên)
e) HD: Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\) => x = 2k; y = 3k; z = 5k (*)
Thay x = 2k; y = 3k ; z = 5k vào xyz = 810 => tìm k => thay k ngược lại vào (*)
Nếu ko hiểu cứ hỏi t
b,Sửa đề : \(\frac{x}{3}=\frac{y}{4};\frac{y}{2}=\frac{z}{5}\)\(2x-3y+z=6\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Leftrightarrow\frac{x}{6}=\frac{y}{8}\)(*)
\(\frac{y}{2}=\frac{z}{5}\Leftrightarrow\frac{y}{8}=\frac{z}{20}\)(**)
Từ (*);(**) \(\Rightarrow\frac{x}{6}=\frac{y}{8}=\frac{z}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{6}=\frac{y}{8}=\frac{z}{20}=\frac{2x-3y+z}{2.6-3.8+20}=\frac{49}{8}\)
\(x=36,75;y=49;z=122,5\)
Tìm x , y , z biết:
a) x/10 = y/6 = z/21 và 5x = y - 2z = 28
b) 3x = 2y ; 7y = 5z và x - y + z = 32
c) x/3 = y/4 ; y/3 = z/5 và 2x - 3y + z = 6
d) 2x/3 = 3y/4 = 4z/5 và x + y + z = 49
e) x-1 trên 2 - y - 2 trên 3 = z -3 trên 4 và 2x + 3y - z = 50
b) 3x = 2y
=> x/2 = y/3 (1)
7y = 5z
=> y/5 = z/7 (2)
Từ (1) và (2), có:
\(\frac{x}{2}=\frac{y}{3};\frac{y}{5}=\frac{z}{7}\Rightarrow\)\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}\)
áp dụng tính chất của dãy tỉ số bằng nhau, có:
\(\frac{x}{10}=\frac{y}{15}=\frac{z}{21}=\frac{x-y+z}{10-15+21}=\frac{32}{16}=2\)
x/10 = 2 => x = 2 x 10 =20
y/15 = 2 => y = 2 x 15 = 30
z/21 = 2 => z = 2 x 21 = 42
Tìm x,y,z biết :
a)x/10=y/6=z/21 và 5x+y-2z=28
b)3x=2y,7y=5z ,x-y+z=32
c)x/3=y/4,y/3=z/5 ,2x-3y+z=6
d)2x/3=3y/4=4z/5 và x+y+z=49
e) (x-1)/2=(y-2)/3=(z-3)/4 và 2x +3y-z =50
g)x/2=y/3=z/5 và x.y.z=810
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\Rightarrow\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
Khi đó: \(\hept{\begin{cases}\frac{5x}{50}=2\Rightarrow x=20\\\frac{y}{6}=2\Rightarrow y=12\\\frac{2z}{42}=2\Rightarrow z=42\end{cases}}\)
e) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\)
Áp dụng tc dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=5\)
Khi đó: \(\hept{\begin{cases}\frac{2x-2}{4}=5\Rightarrow x=11\\\frac{3y-6}{9}=5\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z=23\end{cases}}\).
Tìm x,y,z biết : 2x=3y=10z - 2x - 3y và x+y=z - 32
tìm x y z biết 2x=3y=10z-2x-3y và x+y=z-32
2x=3y=10z-2x-3y hay 4x+3y=2x+6y=10z
hay \(\frac{4x+3y}{10}=\frac{2x+6y}{10}=z\)(1
Ta có : x+y=z-32 thay (1) ta có
\(\hept{\begin{cases}6x+7y=-320\\8x+4y=-320\end{cases}\Leftrightarrow\hept{\begin{cases}x=-30\\y=-20\end{cases}\Rightarrow}z=-18}\)
tìm x,y,z biết 2x-3y=2x+3y,3y-2z=3y+2z và x-2y+z=3
Tìm x, y, z biết (2x-3y)^2018+(3y-4z)^2020+|2x+3y-z-63|=0
Ta có: \(\left\{{}\begin{matrix}\left(2x-3y\right)^{2018}\ge0\forall x,y\\\left(3y-4z\right)^{2020}\ge0\forall y,z\\\left|2x+3y-z-63\right|\ge0\forall x,y,z\end{matrix}\right.\)
\(\Rightarrow\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|\ge0\forall x,y,z\)
Mà: \(\left(2x-3y\right)^{2018}+\left(3y-4z\right)^{2020}+\left|2x+3y-z-63\right|=0\)
nên: \(\left\{{}\begin{matrix}2x-3y=0\\3y-4z=0\\2x+3y-z-63=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x=3y\\3y=4z\\z=2x+3y-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=4z\\3y=4z\\z=4z+4z-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=4z:2\\y=4z:3\\z=8z-63\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=2z\\y=4z:3\\-7z=-63\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\cdot9=18\\y=4\cdot9:3=12\\z=9\end{matrix}\right.\)
Vậy \(x=18;y=12;z=9\).
$Toru$
Tìm x,y,z biết
2x=3y=10z-2x-3y và x-y+z=-15
a) tìm x biết : I x-2I + I3-2x I = 2x+1
b) tìm x,y thuộc Z biết : xy+2x-y= 5
c) tìm x,y thuộc Z biết : 2x=3y; 4y=5z va 4x-3y + 5z = 7
a, nếu x<3/2suy ra x-2<0 suy ra |x-2|=-(x-2)=2-x
(3-2x)>0 suy ra|3-2x|=3-2x
ta có: 2-x+3-2x=2x+1
5-3x=2x+1
5-1=2x+3x
6=6x nsuy ra x=6(loại vì ko thuộc khả năng xét)
nếu \(\frac{3}{2}\le x<2\)thì x-2<0 suy ra|x-2|=-(x-2)=2-x
2-2x<0 suy ra|3-2x|=-(3-2x)=2x-3
ta có:2-x+2x-3=2x+1
-1+x=2x+1
-1-1=2x-x
-2=x(loại vì ko thuộc khả năng xét)
nếu \(x\ge2\)thì x-2\(\ge\)0suy ra:|x-2|=x-2
3-2x<0 suy ra:|3-2x|=-(3-2x)=2x-3
ta có:x-2+2x-3=2x+1
3x-5=2x+1
3x-2x=5+1
x=6(chọn vì thuộc khả năng xét)
suy ra x=6
c)\(tacó:2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{15}=\frac{y}{10}\)
\(4y=5z\Rightarrow\frac{y}{5}=\frac{z}{4}\Rightarrow\frac{y}{10}=\frac{z}{8}\)
suy ra:\(\frac{x}{15}=\frac{y}{10}=\frac{z}{8}=k\Rightarrow x=15k;y=10k;z=8k\)
ta có: 4(15k)-3(10k)+5(8k)=7
60k-30k+40k=7
70k=7 suy ra k=1/10
ta có:x=1/10.15=3/2
y=1/10.10=1
tìm x biết : I x-2I + I3-2x I = 2x+1
b) tìm x,y thuộc Z biết : xy+2x-y= 5
c) tìm x,y thuộc Z biết : 2x=3y; 4y=5z va 4x-3y + 5z = 7
Câu hỏi tương tự Đọc thêm Báo cáo
Toán lớp 7
nhoc quay pha 22/02/2016 lúc 15:37
c)