Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hana xinh đẹp
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2022 lúc 1:45

\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2009}-\dfrac{1}{2010}\right)\)

\(=\dfrac{-1}{2010}-\left(1-\dfrac{1}{2010}\right)\)

\(=\dfrac{-1}{2010}-1+\dfrac{1}{2010}=-1\)

lyzimi
Xem chi tiết
Võ Thị KimThoa
Xem chi tiết
Võ Đông Anh Tuấn
4 tháng 11 2016 lúc 20:29

ĐK: \(x\notin\left\{-\frac{1}{2008};-\frac{2}{2009};-\frac{4}{2010};-\frac{5}{2011}\right\}\)

Với ĐK trên , pt đã cho tương đương với :

\(\frac{1}{2008x+1}+\frac{1}{2011x+5}=\frac{1}{2009x+2}+\frac{1}{2010x+4}\)

\(\Leftrightarrow\frac{4019x+6}{\left(2008x+1\right)\left(2011x+5\right)}=\frac{4019x+6}{\left(2009x+2\right)\left(2010x+4\right)}\)

\(\Leftrightarrow4019x+6=0\)

Hoặc : \(\frac{1}{\left(2008x+1\right)\left(2011x+5\right)}=\frac{1}{\left(2009x+2\right)\left(2010x+4\right)}\)

\(\Leftrightarrow4019x+6=0\) hoặc\(\left(2008x+1\right)\left(2011x+5\right)-\left(2009x+2\right)\left(2010x+4\right)=0\)

\(\Leftrightarrow4019x+6=0\) hoặc \(2x^2+5x+3=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-\frac{6}{4019}\\x=-1\\x=-\frac{3}{2}\end{array}\right.\)

Vậy pt trên có 3 nghiệm : \(x=-\frac{6}{4019};x=-1;x=-\frac{3}{2}\).

 

Tra My Nguyen
Xem chi tiết
Nguyễn Việt Anh
Xem chi tiết
Vux Minh Thu
Xem chi tiết
Viet Vu thi
Xem chi tiết
Nguyễn Anh Quân
31 tháng 1 2018 lúc 21:17

pt <=> (x^4-x)+(2009x^2+2009x+2009) = 0

<=> x.(x^3-1)+2009.(x^2+x+1) = 0

<=> x.(x-1).(x^2+x+1)+2009.(x^2+x+1) = 0

<=> (x^2+x+1).(x^2-x+2009) = 0

=> pt vô nghiệm ( vì x^2+x+1 và x^2-x+2009 đều >= 0 )

Tk mk nha

Viet Vu thi
Xem chi tiết
Không Tên
31 tháng 1 2018 lúc 21:23

     \(x^4+2009x^2+2008x+2009=0\)

\(\Leftrightarrow\)\(\left(x^4+x^2+1\right)+2008\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^4+2x^2+1-x^2\right)+2008\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(\left[\left(x^2+1\right)^2-x^2\right]+2008\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2+x+1\right)\left(x^2-x+1\right)+2008\left(x^2+x+1\right)=0\)

\(\Leftrightarrow\)\(\left(x^2+x+1\right)\left(x^2-x+2009\right)=0\)

Ta có:   \(x^2+x+1=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}>0\)

           \(x^2-x+2009=\left(x-\frac{1}{2}\right)^2+\frac{8035}{4}>0\)

Vậy  pt vô nghiệm

Nguyễn Xuân Anh
1 tháng 2 2018 lúc 1:24

Bài này thường là phân tích đa thức thành nhân tử chứ có phải là giải phương trinh đâu

Redmoon
Xem chi tiết