tìm max nguyên P với tất cả gt nguyên của x
P=\(\frac{4}{25-x}\)
Cho biểu thức P=\(\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1},\) với x>0.Tìm tất cả các giá trị nguyên của x để P nhận giá trị nguyên
\(P=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(P=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{\sqrt{x}}{\sqrt{x}+1}=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}\inℤ\Leftrightarrow x+4\sqrt{x}+3⋮\sqrt{x}\)
Giải tiếp nhé sau đó thử chọn :V
\(p=\frac{4\sqrt{x}+3}{x+\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x}+1}\)
\(=\frac{4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}+\frac{x}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{x+\sqrt{x}+3\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)
Để \(x\in Z\Rightarrow P\in Z\)
\(\Rightarrow\sqrt{x}\inƯ\left(3\right)= \left\{-3;3\right\}\)
\(\Leftrightarrow x=9\left(t.mĐKXĐ\right)\)
Với x >0
\(P=\frac{x+4\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\sqrt{x}\left(\sqrt{x}+1\right)}=\frac{\sqrt{x}+3}{\sqrt{x}}=1+\frac{3}{\sqrt{x}}\)
Để P nhận giá trị nguyên thì \(\frac{3}{\sqrt{x}}\in Z\Leftrightarrow\sqrt{x}\in U\left(3\right)\Leftrightarrow\sqrt{x}\in\left\{1,3\right\}\)<=> x thuộc {1, 9}
Cho N=\(\frac{\sqrt{x}}{\sqrt{x}-1}-\frac{1}{x-\sqrt{x}}\)
a) Tìm ĐKXĐ rồi rút gọn N
b)Tìm tất cả các số thực của x sao cho x>\(\frac{1}{25}\) với N nhận giá trị nguyên
a) Tìm tất cả nghiệm nguyên dương của bất phương trình : \(11x-7< 8x+7\)
b) Tìm tất cả nghiệm nguyên âm của bất phương trình \(\frac{x^2+2x+8}{2}-\frac{x^2-x+1}{6}>\frac{x^2-x+1}{3}-\frac{x+1}{4}\)
c)Tìm nghiệm nguyên nhỏ nhất của bất phương trình : \(2\left(3-x\right)-1,5\left(x-4\right)< 3-x\)
a)11x-7<8x+7
<-->11x-8x<7+7
<-->3x<14
<--->x<14/3 mà x nguyên dương
---->x \(\in\){0;1;2;3;4}
b)x^2+2x+8/2-x^2-x+1>x^2-x+1/3-x+1/4
<-->6x^2+12x+48-2x^2+2x-2>4x^2-4x+4-3x-3(bo mau)
<--->6x^2+12x-2x^2+2x-4x^2+4x+3x>4-3+2-48
<--->21x>-45
--->x>-45/21=-15/7 mà x nguyên âm
----->x \(\in\){-1;-2}
c)2(3-x)-1,5(x-4)<3-x
<--->6-2x-1,5x+6<3-x
<--->6+6-3<2x+1,5x-x
<--->9<2,5x
<--->3,6<x mà x la so nguyen nhỏ nhất
--->x=4
Tìm tất cả giá trị nguyên của x, sao cho: (x + 7) . (4 - x) > 0
Nếu giải cụ thể ra thì nó thế này :
Vì tích hai số nguyên > 0 nên chúng cùng dấu.
Xét TH1 : \(\hept{\begin{cases}x+7>0\\4-x>0\end{cases}}\) <=> \(\hept{\begin{cases}x>-7\\x< 4\end{cases}}\) <=> \(-7< x< 4\)
Xét TH2 : \(\hept{\begin{cases}x+7< 0\\4-x< 0\end{cases}}\) <=> \(\hept{\begin{cases}x< -7\\x>4\end{cases}}\) ( Vô lí )
Vậy -7<x<4.
Áp dụng tính chất ngoài-đồng trong-khác :D ta có :
\(-7< x< 4\)
Vậy...
a) tìm giá trị nhỏ nhất của biểu thức C= \(\frac{\left|x-2017\right|+2018}{\left|x-2017\right|+2019}\)3
b) chứng tỏ rằng S=\(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)không là stn với mọi n thuộc N , n>2
c) tìm tất cả các cặp số nguyên x,y sao cho : x-2xy+y=0
d)tìm tất cả các cặp số nguyên dương x,y,z thỏa mãn : x+y+z=xyz
\(P=\frac{x}{x-4}+\frac{\sqrt{x}}{x+2\sqrt{x}}-\frac{1}{x-\sqrt{x}}\)với x>0 và \(x\ne4\)
a) Rút gọn P
b) Tìm tất cả các số nguyên x để P<0
a) \(P=\frac{x}{x-4}+\frac{\sqrt{x}}{x+2\sqrt{x}}-\frac{1}{x-2\sqrt{x}}\)
\(=\frac{x\sqrt{x}}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}+\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right).\left(\sqrt{x}+2\right).\sqrt{x}}\)
\(=\frac{x-\sqrt{x}-1}{x-2\sqrt{x}}\)
b) Nếu \(x>4\)thì ta dễ thấy \(x-\sqrt{x}-1>0,x-2\sqrt{x}>0\)nên \(P>0\).
Ta thử các trường hợp \(x\)nguyên, \(0< x< 4\)ta chỉ thấy \(x=3\)thỏa mãn \(P< 0\).
tim tất cả các cặp số nguyên (x;y) thỏa mãn phuong trinh\(y=\frac{2x^3+x^2-11x+5}{2x-3}\) biết rằng :-25=<x ;y>=25
tìm tất cả các giá trị nguyên của x để biểu thức có giá trị nguyên
\(\frac{\sqrt{x}}{x-4}\)
Đặt \(\frac{\sqrt{x}}{x-4}=a\left(a\inℤ\right)\)
Nếu x không là số chính phương,ta có:
\(\Rightarrow\sqrt{x}=\left(x-4\right)a\)
Mặt khác;\(\hept{\begin{cases}\sqrt{x}\notinℤ\\\left(x-4\right)a\inℤ\end{cases}}\)
Suy ra mâu thuẫn
Do đó,x là số chính phương.
\(\Rightarrow\sqrt{x}\inℤ\)
Ta lại có :Để \(\frac{\sqrt{x}}{x-4}\inℤ\Leftrightarrow\sqrt{x}⋮x-4\Rightarrow\left(\sqrt{x}\right)^2⋮x-4\)
\(\Leftrightarrow\left(x-4\right)+4⋮x-4\)
\(\Rightarrow4⋮x-4\)
Mà x là số nguyên nên x-4 là số nguyên
\(\Rightarrow x-4\in\left\{\pm1;\pm2;\pm4\right\}\)
\(\Rightarrow x\in\left\{0;2;3;5;6;8\right\}\)
Mà x là số chính phương nên x=0(thỏa mãn)
Vậy khi x=0 thì \(\frac{\sqrt{x}}{x-4}\inℤ\)