Chứng minh rằng: Trong 5 số tự nhiên bất kỳ bao giờ cũng tồn tại 3 số có tổng chia hết cho 3
Chứng minh rằng : Trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3
Chứng minh rằng : Trong 5 số tự nhiên bất kì bao giờ cũng tồn tại 3 số có tổng chia hết cho 3 .
3 số lẻ liên tiếp hoặc 3 số chẵn liên tiếp chia hết cho 3
Chứng minh rằng: Trong 5 số tự nhiên bất kỳ bao giờ cũng tồn tại 3 số có tổng chia hết cho 3.
Ai trả lời nhanh nhất và đúng nhất thì mình sẽ tick cho người đấy và kết bạn nha !!!!
Chứng minh rằng trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.
Gọi 3 số đó lần lượt là 2K;2K+1 và 2K+2
Theo đề bài ra ta có thì phải chứng minh trong 3 STN liên tiếp phải có tổng 2 số tự nhiên bất kì chia hết cho 2
Vậy ta có 3 TH là 2K+(2K+2) và 2K+2K+1 và (2K+2)+(2K+1)
Xét TH1: 2K+(2K+2)
Ta có: 2K+(2K+2)= (2K+2K)+2 =4K+2
Vì 4 chia hết cho và 2 chia hết cho 2 => 4K+2 chia hết cho 2
Xét TH2: 2K+(2K+1)
Ta có: 2K+(2K+1)= (2K+2K)+1= 4K+1
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 1 không chia hết cho 2
=> 4K+1 không chia hết cho 2
Xét TH3: (2K+2)+(2K+1)
Ta có: (2K+2)+(2K+1)= (2K+2K)+(1+2)= 4K+3
Vì 4 chia hết cho 2 => 4K chia hết cho 2 nhưng 3 không chia hết cho 2
=> 4K+3 không chia hết cho 2
Từ 3 TH trên => trong 3 số tự nhiên bất kỳ, bao giờ cũng có thể tìm được 2 số sao cho tổng của chúng chia hết cho 2.
Khi chia một số tự nhiên cho 2 , số dư có thể là 0 hoặc 1
Suy ra khi chia ba số tự nhiên bất kỳ cho 2 số dư bằng một trong hai số 0 ; 1
Do đó 2 trong 3 số đó có cùng số dư nên hiệu của hai số chia hết cho 2.
chứng minh rằng : trong 3 số tự nhiên bất kỳ bao giờ cũng có thể chọn được 2 số sao cho tổng của chúng chia hết cho 2
Gọi 3 số tự nhiên đó là a, b, c
Ta thấy có 3 số mà chỉ có loại đó là chẵn và lẻ
=> trong 3 số a, b, c phải có 2 số cùng tính chẵn lẻ
=> tổng của chúng chia hết cho 2
Vì 3 số bất kỳ cũng sẽ có 2 số lẻ hoặc chẵn mà 2 số lẻ hoặc chẵn cộng lại sẽ là số chẵn. mà số chẵn thì chia hết cho 2.
Chứng minh rằng: Trong 5 số tự nhiên bất kỳ bao giờ cũng tồn tại 3 số có tổng chia hết cho 3
Bn tham khảo lời giải ở link này nhé :
Câu hỏi của Thiên Yết 2k8 - Toán lớp 6 - Học trực tuyến OLM
#H
ê bn chơi xấu lên mạng tìm nhá
Toi bảo tham khảo, được chưa?
Lấy link sao chép về có phải nhanh hơn k?
a) Chứng minh rằng trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
b) Chứng minh rằng trong 5 số tự nhiên bất kỳ bao giờ cũng chọn được 2 số có hiệu chia hết cho 4
a, ta có 5 số tn liên tiếp là n;n+1;n+2;n+3;n+4 nếu n chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 1 => n +4 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 2 => n +3 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 3 => n + 2 chia hết cho 5 => ĐPCM
nếu n chia cho 5 dư 4 => n +1 chia hết cho 5 => ĐPCM
Vậy trong 5 số tự nhiên liên tiếp luôn có một số chia hết cho 5
Bài 1: Chứng minh rằng trong 4 số tự nhiên bất kỳ bao giờ cũng có 2 số có hiệu chia hết cho 3
Sử dụng nguyên lý ĐI-rích-lê. Có bài tương tự trong câu hỏi tương tự
Chứng minh rằng trong 52 số tự nhiên bất kỳ bao giờ cũng có thể tìm được hai số có tổng hoặc hiệu chia hết cho 100