Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Đình Trọng
Xem chi tiết
Lê Thành An
Xem chi tiết
Vương Đình Trọng
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Trương Thanh Nhân
Xem chi tiết
Nguyễn Minh Quang
24 tháng 8 2021 lúc 7:01

Có: 2n+2017=a^2 (1)        (a,b ∈N)

      n+2019=b^2  (2)   

Từ (1)⇒ a lẻ ⇒ a=2k+1 (k∈N)

 (1) trở thành 2n+2017=(2k+1)^2

                    ⇔ n+1008=2k(k+1)

Vì k(k+1) là tích 2 số tự nhiên liên tiếp ⇒ k(k+1) chia hết cho 2 

⇒ n+1008 chia hết cho 4 ⇒n chia hết cho 4 (vì 1008 chia hết cho 4)

Vì n chia hết cho 4 ⇒ b lẻ ⇒b=2h+1 (h∈N)

(2) trở thành n+2019=(2h+1)^2

                    ⇔n+2018=4(h^2+h) (3)

Có: n chia hết cho 4, 2018 không chia hết cho 4

⇒ n+2018 không chia hết cho 4

mà 4(h^2+h) chia hết cho 4

Nên (3) vô lý

Vậy không tồn tại n thỏa mãn

Khách vãng lai đã xóa
ak123
Xem chi tiết
ak123
Xem chi tiết
Dang Hoang Mai Han
Xem chi tiết
Yen Nhi
11 tháng 9 2021 lúc 20:59

a. tìm a là số tự nhiên để 17a+8 là số chính phương

Giả sử \(17a+8=x^2\Rightarrow17a-17+25=x^2\Rightarrow17\left(a-1\right)=x^2-25\Rightarrow17\left(a-1\right)=\left(x-5\right)\left(x+5\right)\)

\(\Rightarrow\left(x-5\right);\left(x+5\right)⋮17\)

\(\Rightarrow x=17n\pm5\Rightarrow a=17n^2\pm10n+1\)

Khách vãng lai đã xóa
Tsubasa( ɻɛɑm ʙáo cáo )
Xem chi tiết
Xyz OLM
11 tháng 6 2021 lúc 15:18

a) Đặt A = 20184n + 20194n + 20204n

= (20184)n + (20194)n + (20204)n

= (....6)n + (....1)n + (....0)n

= (...6) + (...1) + (...0) = (....7) 

=> A không là số chính phương

b) Đặt 1995 + n = a2 (1) 

2014 + n = b2 (2)

a;b \(\inℤ\)

=> (2004 + n) - (1995 + n) = b2 - a2

=> b2 - a2 = 9

=> b2 - ab + ab - a2 = 9

=> b(b - a) + a(b - a) = 9

=> (b + a)(b - a) = 9

Lập bảng xét các trường hợp

b - a19-1-93-3
b + a91-9-1-33
a-444-4-33
b55-5-500

Từ a;b tìm được thay vào (1)(2) ta được 

n = -1979 ; n = -2014 ; 

Khách vãng lai đã xóa