Cho hình bình hành ABCD có BC = 10cm. Qua A kẻ tia Ax cắt DC ở E, cắt BC ở G.
Biết GB = 16cm, AE = 8cm. Tính GE?
Cho hình bình hành ABCD có BC = 10cm. Qua A kẻ tia Ax cắt DC ở E, cắt BC ở G. Biết GB = 16cm, AE = 8cm. Tính GE.
CHO HÌNH BÌNH HÀNH ABCD. QUA A VẼ TIA Ax CẮT CẠNH BC Ở J, CẮT DB Ở I VÀ CẮT TIA DC Ở K. CM IA2=IJ*IK VÀ KD*BJ KHÔNG ĐỔI
Cho hình bình hành ABCD có góc B = 120 độ, AB = 10cm, AD = 15cm. Tia phân giác của góc A cắt BC tại E. a) Tính BC. b) Kẻ BH ⊥ AE. Tính BH. c) Tính S ABE
Cho hình bình hành ABCD có AB// CD . gọi O là Giao điểm của AC và BD , qua O kẻ đường thẳng song song với DC cắt AD ở M cắt BC ở N a, chứng minh AM/ AD = BN / BC. b, từ O kẻ đường thẳng song song với AD và BC cắt DC lần lượt E và F. Chứng minh tứ giác DMOE là hình bình hành và AM/AD = MO/DC. c, chứng minh DE= FC. d, chứng minh 1/AB +1/DC= 2/MN
1. cho hình thang cân ABCD (AB//CD). Từ A kẻ tia Ax song song với BC, tia Ax cắt DC ở E.
a/ cmr tứ giác ABCE là hình bình hành.
b/ kẻ đường cao AH, kéo dài BA về phía A một đoạn AM=HD. cmr AHDM là hình chữ nhật.
c/ lấy điểm N đối xứng với điểm A qua điểm H. cmr AEND là hình thoi.
1. Cho tứ giác ABCD. E ∈ AB. Kẻ qua E đường thẳng song song AC cắt BC ở F. Qua F vẽ đường thẳng song song BD cắt CD ở G. Qua G vẽ đường thẳng song song vs AC cắt AD ở H. CM: EFGH là hình bình hành.
2. Cho ΔABC có AB=4cm, BC=8cm, AC=6cm. Các p/g trong và ngoài tại A cắt BC ở D, E. Tính BD, DC, BE.
3. Cho hthang ABCD( AB//CD). AB=10cm, CD=30cm, E ∈ AD sao cho AE=3ED. Qua E kẻ đường thẳng song song với CD cắt BC ở F. Tính EF.
Cho hình bình hành ABCD, điểm F trên cạnh BC. Tia AF cắt BD và DC lần lượt ở E và G. Chứng minh. a) ∆BEF~∆DEA; ∆DGE~∆BAE. b) AE^2 = EF~EG
a: Xét ΔBEF và ΔDEA có
góc BEF=góc DEA
góc EBF=góc EDA
=>ΔBEF đồng dạng với ΔDEA
Xet ΔDGE và ΔBAE có
góc EDG=góc EBA
góc DEG=góc BEA
=>ΔDGE đồng dạng với ΔBAE
b: ΔBEF đồng dạng với ΔDEA
=>EB/ED=EF/EA
=>EA*EB=ED*EF
=>EA=ED*EF/EB
ΔDGE đồng dạng với ΔBAE
=>ED/EB=EG/EA
=>ED*EA=EB*EG
=>EA=EB*EG/ED
=>EA^2=EF*EG
1. cho hình thang cân ABCD (AB//CD). Từ A kẻ tia Ax song song với BC, tia Ax cắt DC ở E.
a/ cmr tứ giác ABCE là hình bình hành.
b/ kẻ đường cao AH, kéo dài BA về phía A một đoạn AM=HD. cmr AHDM là hình chữ nhật.
c/ lấy điểm N đối xứng với điểm A qua điểm H. cmr AEND là hình thoi.
Cho hình vuông ABCD. Gọi E là một điểm trên BC. Qua A kẻ tia Ax vuông góc với AE, Ax cắt CD tại F. Trung tuyến AI của tam giác AEF cắt CD ở K. Đường thẳng qua E song song với AB cắt AI ở G.
Chứng minh
a)AE = AF và EGFK là hình thoi.
b)EK=BE+DK va tính chu vi EKC.
c) EF^2=EK.FC
Ta có
góc FAD+DAE=90•
DAE+EAB=90•
-> FAD=EAB
xet tam giác AEB và tam giác ADF có
AB=AD( ABCD là hình vuông)
ABE=ADF=90•
FAD=EAB
suy ra tam giac ABE=tam giác ADF(g.c.g)
-> AF=AE