tìm n thuộc N:1/3+1/6+1/10+...+2/n.(n+1)=2003/2004
a) Tìm số tự nhiên n biết: 1/3+1/6+1/10+...+2/n(n+1)=2003/2004
b) Cho S =3/1+4+3/4+7+3/7+10+...+3/n(n+3) n thuộc N* Chứng minh: S<1
tìm số tự nhiên n biết : 1/3 + 1/6 + 1/10 + ... + 2/n(n+1) = 2003/2004
1/3 + 1/6 + 1/10 + ... + 2/n(n+1) = 2003/2004
\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n.\left(n+1\right)}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)
\(\Rightarrow n+1=4008\)
\(\Rightarrow n=4008-1=4007\)
Tìm số tự nhiên n biết : 1/3+1/6+1/10+...+2/n.(n+1)=2003/2004
\(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Leftrightarrow\frac{1}{2}\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+....+\frac{2}{n\left(n+1\right)}\right)=\frac{1}{2}.\frac{2003}{2004}\)
\(\Leftrightarrow\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)
\(\Leftrightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{n\left(n+1\right)}=\frac{2003}{4008}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Leftrightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Leftrightarrow\frac{1}{n+1}=\frac{1}{2}-\frac{2003}{4008}=\frac{1}{4008}\)
\(\Rightarrow n+1=4008\Rightarrow n=4007\)
Vậy \(n=4007\)
1/3+1/6+1/10+....+2/n(n+1)=2003/2004
Tìm số tự nhiên n biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
Tìm số tự nhiên n biết: \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{n.\left(n+1\right)}=\frac{2003}{2004}\)
đặt a=1/3+1/6+1/10+...........+2/n(n+1)
1/2a=1/6+1/12+...........+1/n(n+1)
1/2a=1/2.3+1/3.4+........+1/n(n+1)
1/2a=1/2-1/3+1/3-1/4+.......+1/n-1/n+1
1/2a=1/2-1/n+1
a=(1/2--1/n+1):1/2=2003/2004
1/2-1/n+1=2003/2004.1/2
1/2-1/n+1=2003/4008
1/n+1=1/2-2003/4008
1/n+1=1/4008
suy ra n+1=4008
n=4007
Tìm số tự nhiên n biết: 1/3 + 1/6+1/10+...+2/n(n+1)= 2003/2004
Tìm x nguyên biết 4x+9/6x+5 nguyên
Tìm số tự nhiên n biết 1/3+1/6+1/10+...+2/n(n+1)=2003/2004
CMR:5/9<1/15+1/16+...+1/33+1/34<4/3
Để \(\frac{4x+9}{6x+5}\)\(\in Z\)thì \(4x+9\)chia hết \(6x+5\)
\(\Rightarrow3.\left(4x+9\right)\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(12x+27\)chia hết cho \(6x+5\)
\(\Rightarrow\)\(2.\left(6x+5\right)+17\)chia hết cho \(6x+5\)
\(\Rightarrow\)17 chia hết cho \(6x+5\)
\(\Rightarrow\)6x +5 thuộc Ư(17)
suy ra 6x+5 thuộc {+-1;+-17}
ĐẾN ĐÂY BẠN TỰ LẬP BẲNG TÌM X NHÉ
Vậy x thuộc{-1;2}
B)Tích đi mình làm tiếp cho
Có: 1/3+1/6+1/10+...+2/n(n+1)=2003/2004
=>1/2.[ 1/3+1/6+1/10+...+2/n(n+1)]=2003/2004.1/2
=>1/6+1/12+1/20+...+1/n.(n+1)=2003/2004.1/2
=>1/2.3+1/3.4+1/4.5+...+1/n.(n+1)=2003/2004.1/2
=>1/2-1/3+1/3-1/4+1/4-1/5+....+1/n-1/n+1=2003/2004.1/2
=>1/2-1/n+1=2003/4008
=>1/n+1=1/4008
=>n+1=4008
=>n=4007
Vậy n=4007
Tích đi bạn mình làm cho 2 câu rồi đấy
Tìm n biết :\(\frac{1}{3}\)+\(\frac{1}{6}\)+\(\frac{1}{10}\)+......+\(\frac{2}{n.\left(n+1\right)}\)=\(\frac{2003}{2004}\)
\(\frac{1}{3}+\frac{1}{6}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Rightarrow\frac{2}{6}+\frac{2}{12}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Rightarrow\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{n\left(n+1\right)}=\frac{2003}{2004}\)
\(\Rightarrow2\left(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{n\left(n+1\right)}\right)=\frac{2003}{2004}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n}-\frac{1}{n+1}=\frac{2003}{4008}\)
\(\Rightarrow\frac{1}{2}-\frac{1}{n+1}=\frac{2003}{4008}\)\(\Rightarrow\frac{1}{n+1}=\frac{1}{4008}\)\(n+1=4008\Rightarrow n=4007\)