Tìm giá trị x để biểu thức M = \(\frac{2x-5}{x}\)có giá trị nhỏ nhất
Giúp mình vs
Tìm giá trị nguyên của x để biểu thức M=\(\frac{2x-5}{x}\)có giá trị nhỏ nhất
Vì \(2x⋮x\Rightarrow-5⋮x\)
\(\Rightarrow x\inƯ\left(-5\right)=\left\{5;-5\right\}\)
Thì Mmin = 1
1. cho pt: \(x^2+mx+m-2=0\). tìm m để pt có 2 nghiệm phân biệt \(x_1,x_2\) sao chobieeru thức A= \(x_1^2+x_2^2\) có giá trị nhỏ nhất
giúp mk vs
\(\Delta=m^2-4\left(m-2\right)=m^2-4m+8=\left(m-2\right)^2+4>0\)
Do đó: Phương trình luôn có hai nghiệm phân biệt
Ta có: \(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2\)
\(=m^2-2\left(m-2\right)=m^2-2m+4=\left(m-1\right)^2+3\ge3\forall m\)
Dấu '=' xảy ra khi m=1
Cho biểu thức\(B=2x+\frac{8}{x-3}-5\)
a>Tìm giá trị nhỏ nhất của biểu thức B.
b>Tìm giá trị của x để bểu thức B có giá trị nhỏ nhất.
Đề không cho gì hết nên ta xét 2 trường hợp.
Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.
Trường hợp 2: \(x\ge0\) thì ta thấy \(x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.
Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN
Đề không cho gì hết nên ta xét 2 trường hợp.
Trường hợp 1: \(x< 0\) thì ta thấy khi x càng nhỏ thì 2x càng nhỏ hay x càng nhỏ thì B càng nhỏ. Nên trong trường hợp này không tìm được GTNN.
Trường hợp 2: \(x\ge0\) thì ta thấy \(3>x\ge0\) và càng gần với 3 thì giá trị của của \(\dfrac{8}{x-3}\) càng bé hay B càng bé.
Từ đây có thể thấy với cái đề như vầy thì không tồn tại GTNN
tìm giá trị nguyên của n để phân số M =3n-1/n-1 có giá trị nhỏ nhất
giúp mik vs ạ
\(M=\dfrac{3n-1}{n-1}=\dfrac{3n-3+2}{n-1}=3+\dfrac{2}{n-1}\)
Để M min thì \(\dfrac{2}{n-1}\) min
=>n-1=-1
=>n=0
Tìm giá trị nguyên của x để biểu thức M=2x-5/x có giá trị nhỏ nhất.
cho biểu thức :\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a, tìm điều kiện của biến x để giá trị của biểu thức được xác định
b, tìm giá trị của x để giá trị của biểu thức bằng 1
c, tìm giá trị của x để giá trị của x= -\(\frac{1}{2}\)
d, tìm giá trị của x để giá trị của biểu thức bằng -3
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+2x\right)+2\left(x+5\right)\left(x-5\right)+50-5x}{2x\left(x+5\right)}=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}=\)
\(=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2+4x-5\right)}{2x\left(x+5\right)}=\frac{x\left(x^2-1+4\left(x-1\right)\right)}{2x\left(x+5\right)}=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}\)
a/ Để biểu thức xác đinh => 2x(x+5) khác 0 => x khác 0 và x khác -5
b/ Gọi biểu thức là A. Rút gọn A ta được:
\(A=\frac{x\left(x-1\right)\left(x+5\right)}{2x\left(x+5\right)}=\frac{x-1}{2}\left(x\ne0;x\ne-5\right)\)
A=1 => x-1=2 => x=3
c/ A=-1/2 <=> x-1=-1 => x=0
d/ A=-3 <=> x-1=-6 => x=-5
Tìm giá trị nguyên của x để biểu thức M=2x−5/x có giá trị nhỏ nhất
\(M=\frac{2x-5}{x}=\frac{2x}{x}-\frac{5}{x}=2-\frac{5}{x}\)
de M dat gia tri nho nhat thi 5/x nho nhat
=> x = -1
kl_
Phương Uyên 2-(-5)=+7(âm - âm=dương)
Để \(M_{min}\Rightarrow\left(2-\frac{5}{x}\right)_{min}\Rightarrow\left(\frac{5}{x}\right)_{max}\)
ta thấy 5>0 và không đổi => x>0
mà để \(\left(\frac{5}{x}\right)max\Rightarrow x_{min}\text{ mà }x>0\Rightarrow x=1\left(x\in Z\right)\)
Vậy ....
p/s: nếu x=-1 =>\(2-\frac{5}{x}=2-\frac{5}{-1}=2+5=7\)
Bài 1: Cho biểu thức C = \(\frac{x}{2x-2}+\frac{x^2+1}{2x-2x^2}\)
a. Tìm x để biểu thức có nghĩa
b.Rút gọn biểu thứ C
c. tìm giá trị của x để biểu thức có giá trị -0,5
Bài 2: Cho biểu thức A = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
a. Tìm điều kiện của biến x để giá trị của biểu thức A được xác định
b.Tìm giá trị của x để A=1; A=-3
. Giúp mình giải những bài trong Violympic nhé !
1. Giá trị của x để biểu thức B = 3 - x2 + 2x đạt giá trị lớn nhất .
2. Giá trị lớn nhất của biểu thức A = - 2x2+x-5 .
3. Giá trị của biểu thức 4x(x+1)-(1+2x)2-9 .
4. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
5. Giá trị rút gọn của biểu thức (2x-4)(x+3)-2x(x+1).
6. Giá trị nhỏ nhất của biểu thức 4x2-20x+40.
7. Giá trị của x để 3(2x+9)2-1 đạt giá trị nhỏ nhất.
8. Giá trị của x để x2-48x+65 đạt giá trị nhỏ nhất.
9. Giá trị nhỏ nhất của biểu thức A = x(x+1)+3/2 .
1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4
vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)2 nhỏ hơn hoặc bằng 0 với mọi x
vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4
các bài giá trị nhỏ nhất còn lại làm tương tự bạn nhé
chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được
1 .
3−x2+2x3−x2+2x
=−(x2−2x−3)=−(x2−2x−3)
=−(x2−2.x.1+1−4)=−(x2−2.x.1+1−4)
=−((x−1)2−4)=−((x−1)2−4)
=4−(x−1)2≤4=4−(x−1)2≤4
Vậy MAXB=4⇔x−1=0⇒x=1
2 .
A=2x2−5x+2=2(x2−52x+2516)−98A=2x2−5x+2=2(x2−52x+2516)−98
=2(x−54)2−98=2(x−54)2−98
Ta có : 2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x2(x−54)2≥0∀x;2(x−54)2−98≥−98∀x
Vậy GTNN A = -9/8 <=> x = 5/4
3 .