so sánh a,b biết: a= 2^2018-3/2^2017-1 và b=2^2017-3/2^2016-1
So sánh A và B biết:
A=2016/2017+2017/2018+2018/2016
B=1/3+1/4+1/5+...+1/17
So sánh A=2018^2-2017^2 và B=2017^2-2016^2
So sánh C=2018^2+2016^2 và D=2.2017^2
a: Ta có: \(A=2018^2-2017^2=2018+2017\)
\(B=2017^2-2016^2=2017+2016\)
mà 2018>2016
nên A>B
Bài 1:
a)IxI=2017
b)Cho A=1+2+2^2+2^3+...+2^2016+2^2017 và B=2^2018.So sánh A và B
Các bạn giúp mik nhé.Cảm ơn nhiều!!!<3<3<3
\(a)\left|x\right|=2017\Rightarrow\hept{\begin{cases}x=-2017\\x=2017\end{cases}\Rightarrow}x=\pm2017\)
\(b)A=1+2^1+2^2+...+2^{2017}\)
\(2A=2+2^2+2^3+...+2^{2018}\)
\(2A-A=(2+2^2+2^3+...+2^{2018})-(1+2^2+2^3+...+2^{2017})\)
\(A=2^{2018}-1\)
...
Rồi còn khúc để bạn so sánh đó
So sánh \(A=\frac{2^{2018}-3}{2^{2017}-1}\) và \(B=\frac{2^{2017}-3}{2^{2016}-1}\)
Ta có: \(\frac{1}{2}A=\frac{2^{2018}-3}{2^{2017}-1}.\frac{1}{2}=\frac{2^{2018}-3}{2^{2018}-2}=\frac{2^{2018}-2-1}{2^{2018}-2}=1-\frac{1}{2^{2018}-2}\)
Tương tự ta có: \(\frac{1}{2}B=1-\frac{1}{2^{2017}-2}\)
Vì \(2^{2018}>2^{2017}\)\(\Rightarrow2^{2018}-2>2^{2017}-2\)
\(\Rightarrow\frac{1}{2^{2018}-2}< \frac{1}{2^{2017}-2}\)\(\Rightarrow1-\frac{1}{2^{2018}-2}>1-\frac{1}{2^{2017}-2}\)
hay \(\frac{1}{2}A>\frac{1}{2}B\)\(\Rightarrow A>B\)( vì \(\frac{1}{2}>0\))
Vậy \(A>B\)
cho A=1+2022+2022^2+2022^3 +2022^4+...+2022^2016 + 2022^2017
và B= 2022^2018-1 . so sánh A và B
\(2022A=2022+2022^2+2022^3+2022^4+...+2022^{2018}\)
\(2021A=2022A-A=2022^{2018}-1\Rightarrow A=\dfrac{2022^{2018}-1}{2021}\)
\(\Rightarrow A< B\)
So sánh :
\(A=\frac{2^{2018}-3}{2^{2017}-1};B=\frac{2^{2017}-3}{2^{2016}-1}\)
\(\frac{B}{A}=\frac{\frac{2^{2017}-3}{2^{2016}-1}}{\frac{2^{2018}-3}{2^{2017}-1}}=\frac{2^{2017}-3}{2^{2016}-1}\cdot\frac{2^{2017}-1}{2^{2018}-3}\)
\(=\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}\)
Ta có: 4.22017 = 22019
3.22016 + 22018 < 4.22016 + 22018 = 2.22018 = 22019
=> 4.22017 > 3.22016 + 22018
=> - 4.22017 < - 3.22016 - 22018
\(\Rightarrow\frac{2^{4034}-4.2^{2017}+3}{2^{4034}-3.2^{2016}-2^{2018}+3}< 1\)
=> B < A
3, so sánh A và B
biết A=2018^2-2016^2
B=2019^2-2017^2
A = 2018^2 - 2016^2
A = (2018 - 2016)(2018 + 2016)
A = 2.4034
B = 2019^2 - 2017^2
B = (2019 - 2017)(2019 + 2017)
B = 2.4036
=> A < B
ggbgbgkbgbgkbokgbgobgkbkogokbgkobkogbkbgb,mb.gnl'g
câu trả lời ở bên dưới
gf'gbf
fgjfb
b
bk
gkbgobpgbogojbgmkh
gg
g
gg
g
g
g
g
g
g
gg
g
g
g
g
g
g
g
g
gg
g
g
g
g
g
g
fgfbgf
nơgnpgpngpnpgnpgpngpnmgknfbbngmnlkgnlmgngnlmbklfgbpfoigfg[e[gr
bố mày đéo bt
A = 20182 - 20162 = 22
B = 20192 - 20172 = 22
Vì 22 = 22 nên A = B
(sai thì thôi)
so sánh a và b biết a=2016/2017+2017/2018+2018/2019+2019/2016 và b=1/8+1/9+1/10+...+1/63
so sánh 2 p/s A=2015/2016+2016/2017+2017/2018 va B=2015+2016+2017/2016+2017+2018
Ta có \(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Leftrightarrow B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Vì
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018};\frac{2016}{2017}>\frac{2016}{2016+2017+2018};\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\) nên \(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Hay \(A>B\)