Cho a,b,c,d là 4 số khác 0 thỏa mãn \(b^2=ac;c^2=ad\) và \(b^3+c^3+d^3\) khác 0 . Chứng minh rằng :
\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)= \(\frac{a}{d}\)
cho 4 số a,b,c,d khác 0 thỏa mãn b^2=ac và c^2=bd. Chứng minh rằng a/d=(a+b+c/b+c+d)^3
\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c};c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{b}{c}\right)^3=\left(\frac{c}{d}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\) (1)
Ta lại có : \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\) (2)
Từ (1) ; (2) => \(\frac{a}{d}=\left(\frac{a+b+c}{b+c+d}\right)^3\) (ĐPCM)
Cho a, b, c, d là 4 số khác 0 thỏa mãn: \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\) = \(\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\\c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\end{matrix}\right.\)\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)
Áp dụng t/c dtsbn:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}\left(1\right)\)
Và \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}\left(2\right)\)
\(\left(1\right),\left(2\right)\Rightarrow\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\left(đpcm\right)\)
cho a,b,c,d là số khác 0 thỏa mãn : \(b^2=ac;c^2=bd\) và \(b^3+c^3+d^3\) khác 0
mik có ghi lại câu hỏi r đấy cố gắng search ra nha bn
Cho a, b, c, d là 4 số khác 0 thỏa mãn \(b^2\) = ac; \(c^2\) = bd và \(b^3+c^3+d^3\ne0\)
Chứng minh rằng: \(\dfrac{a}{d}=\dfrac{a^3+b^3+c^3}{b^3+c^3+d^3}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)
Cho a,b,c,d là 4 số khác 0 thỏa mãn b2=ac, c2=bd và b3+c3+d3 khác 0. Chứng minh rằng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{a}{d}\)
mày có thể tự suy nghĩ ra rùi đặt k rùi làm dễ vkl
Ủa cũng câu như thế vậy b^3+c^3+d^3=a/d
cho a,b,c,d là 4 số khác 0 thỏa mãn b^2= ac và c^2=bd
chứng minh rằng: a^3+b^3+c^3/b^3+c^3+d^3=a/d
giúp mình với mai đi học rùi!!!
Cho 4 số a,b,c,d khác 0 thỏa mãn b2=ac và c2=bd
Chứng minh rằng: \(\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}=\dfrac{a}{d}\)
\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c};c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\\ \Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3+c^3}{c^3+b^3+d^3}\left(1\right)\\ \text{Đặt }\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=k\\ \Rightarrow a=bk;b=ck;c=dk\\ \Rightarrow a=bk=ck^2=dk^3\\ \Rightarrow\dfrac{a}{d}=k^3\\ \text{Mà }\dfrac{a}{b}=k\Rightarrow\dfrac{a^3}{b^3}=k^3\\ \Rightarrow\dfrac{a}{d}=\dfrac{a^3}{b^3}\left(2\right)\\ \left(1\right)\left(2\right)\RightarrowĐpcm\)
Bài 1: Choa;b;c là các số khác 0 và a^2= bc; b^2= ab; c^2=ac.Cmr a=b=c
Bài2: Cho a;b;c là các số khác 0 thỏa mãn ab+ac/2=bc+ba/3=ca+cb/4. Chứng tỏ : a/3= b/5=c/15
1/Cho a,b,c là các số nguyên khác 0 thỏa mãn ab - ac + bc - c2 = -1.Khi đó a/b = ?? (a phần b mà mik ko bik ghi phân số )
2/Tìm a,b nguyên khác 0 thỏa mãn a + b = ab