Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyễn văn minh
Xem chi tiết
toan pham
Xem chi tiết
Vũ Thị Nhung
Xem chi tiết
Vũ Thị Nhung
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 4 2019 lúc 18:20

Câu 1:

\(f\left(x\right)=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}-\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}=m\)

Tọa độ hóa bài toán bằng cách gọi \(A\left(-\frac{1}{2};\frac{\sqrt{3}}{2}\right)\)\(B\left(\frac{1}{2};\frac{\sqrt{3}}{2}\right)\) là hai điểm cố định trên mặt phẳng tọa độ Oxy, M là điểm di động có tọa độ \(M\left(x;0\right)\)

\(\Rightarrow AM=\left|\overrightarrow{AM}\right|=\sqrt{\left(x+\frac{1}{2}\right)^2+\left(0-\frac{\sqrt{3}}{2}\right)^2}=\sqrt{\left(x+\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(BM=\left|\overrightarrow{BM}\right|=\sqrt{\left(x-\frac{1}{2}\right)^2+\frac{3}{4}}\)

\(\Rightarrow f\left(x\right)=AM-BM\)

Mặt khác, theo BĐT tam giác ta luôn có

\(\left|AM-BM\right|< AB=\sqrt{\left(\frac{1}{2}+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2}\right)^2}=1\)

\(\Rightarrow\left|f\left(x\right)\right|< 1\Rightarrow\left|m\right|< 1\Rightarrow-1< m< 1\)

Nguyễn Việt Lâm
20 tháng 4 2019 lúc 18:30

Câu 2:

ĐKXĐ: \(1\le x\le3\)

Đặt \(\sqrt{x-1}+\sqrt{3-x}=a\ge0\)

Áp dụng BĐT Bunhiacốpxki:

\(\Rightarrow a\le\sqrt{\left(1+1\right)\left(x-1+3-x\right)}=2\sqrt{2}\)

Mặt khác

\(a^2=x-1+3-x+2\sqrt{\left(x-1\right)\left(3-x\right)}=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\ge2\)

\(\Rightarrow2\le a\le3\)

Cũng từ trên ta có:

\(a^2=2+2\sqrt{\left(x-1\right)\left(3-x\right)}\Rightarrow\sqrt{\left(x-1\right)\left(3-x\right)}=\frac{a^2-2}{2}=\frac{1}{2}a^2-1\)

Phương trình trở thành:

\(a-\left(\frac{1}{2}a^2-1\right)=m\)

\(\Leftrightarrow-\frac{1}{2}a^2+a+1=m\)

Xét hàm \(f\left(a\right)=-\frac{1}{2}a^2+a+1\) trên \(\left[2;2\sqrt{2}\right]\)

\(f'\left(a\right)=-a+1< 0\) \(\forall a\in\left[2;2\sqrt{2}\right]\)

\(\Rightarrow f\left(a\right)\) nghịch biến trên \(\left[2;2\sqrt{2}\right]\)

\(\Rightarrow f\left(2\sqrt{2}\right)\le f\left(a\right)\le f\left(2\right)\Rightarrow-3+2\sqrt{2}\le f\left(a\right)\le1\)

Vậy:

- Nếu \(\left[{}\begin{matrix}m>1\\m< -3+2\sqrt{2}\end{matrix}\right.\) thì phương trình vô nghiệm

- Nếu \(-3+2\sqrt{2}\le m\le1\) pt có nghiệm

Chiến Lê
Xem chi tiết
Pi Chan
Xem chi tiết
dsawd
Xem chi tiết
Nguyễn Hoàng Anh
Xem chi tiết
Ami Mizuno
9 tháng 2 2022 lúc 8:19

a. \(lim_{x\rightarrow3}\dfrac{x^3-27}{3x^2-5x-2}=\dfrac{3^3-27}{3.3^2-5.3-2}=\dfrac{0}{10}=0\)

b. \(lim_{x\rightarrow2}\dfrac{\sqrt{x+2}-2}{4x^2-3x-2}=\dfrac{\sqrt{2+2}-2}{4.2^2-3.2-2}=\dfrac{0}{8}=0\)

c. \(lim_{x\rightarrow1}\dfrac{1-x^2}{x^2-5x+4}=lim_{x\rightarrow1}\dfrac{\left(1-x\right)\left(x+1\right)}{\left(x-1\right)\left(x-4\right)}=lim_{x\rightarrow1}\dfrac{-\left(x+1\right)}{x-4}=\dfrac{-\left(1+1\right)}{1-4}=\dfrac{2}{3}\)

d. Câu này mình chịu, nhìn đề hơi lạ so với bình thường hehe

Minh An
Xem chi tiết