Có bao nhiêu giá trị nguyên a nhỏ hơn 6 để bất phương trình a(x+4)>3-x nghiệm đúng với mọi x∈[-2;1]?
Cho bất phương trình 3 + x + 6 - x - 18 + 3 x - x 2 ≤ m 2 - m + 1 (m là tham số). Có bao nhiêu giá trị nguyên của m thuộc[-5;5] để bất phương trình nghiệm đúng với mọi x ∈ - 3 ; 6 ?
A. 3
B. 5
C. 9
D. 10
Đặt
Suy ra
Ta có
Ta có bảng biến thiên
Từ bảng biến thiên ta suy ra
Khi đó bất phương trình trở thành:
Xét hàm số với
Ta có
Suy ra hàm số f(t) nghịch biến trên
Chọn C.
Có tất cả bao nhiêu giá trị nguyên của a để bất phương trình 2 log 1 2 a - 3 + 2 x . log 1 2 a - x 2 < 0 nghiệm đúng với mọi x.
A. 5
B. 6
C. 7
D. 8
Chọn C.
Bất phương trình
Đặt , khi đó bất phương trình trở thành x2-2tx-2t+3> 0 (*)
Bất phương trình (*) nghiệm đúng với mọi x khi và chỉ khi
Vậy có tất cả 7 giá trị nguyên của a thỏa mãn yêu cầu bài toán.
Cho bất phương trình m 2 - x + 12 4 - x 2 ≥ 16 x + 3 m 2 + x + 3 m + 35 Có tất cả bao nhiêu giá trị nguyên của tham số m ∈ - 10 ; 10 để bất phương trình nghiệm đúng với mọi x ∈ - 2 ; 2 ?
A. 10
B. 18.
C. 3.
D. 4.
Cho bất phương trình m 2 - x + 12 4 - x 2 ≥ 16 x + 3 m 2 + x + 3 m + 35 .Có tất cả bao nhiêu giá trị nguyên của tham số m ∈ - 10 ; 10 để bất phương trình nghiệm đúng với mọi x ∈ - 2 ; 2 ?
A. 10.
B. 18.
C. 3.
D. 4.
Chọn C
nên hàm t = t (x) nghịch biến trên (-2;2)
Thay vào bất phương trình trên được:
Bất phương trình đã cho nghiệm đúng với mọi x ∈ - 2 ; 2 nếu và chỉ nếu bất phương trình
nghiệm đúng với mọi t ∈ - 6 ; 2
tam thức bậc hai f t = 2 t 2 - m t + 3 m - 5 có hai nghiệm thỏa mãn
Kết hợp với m ∈ - 10 ; 10 thì m ∈ - 10 ; - 9 ; - 8
Hỏi có bao nhiêu giá trị nguyên của m để bất phương trình log 2 2 x + m log 2 x - m ≥ 0 nghiệm đúng với mọi giá trị của x ∈ 0 ; + ∞ ?
A. Có 4 giá trị nguyên
B. Có 6 giá trị nguyên
C. Có 5 giá trị nguyên
D. Có 7 giá trị nguyên
Đáp án C
Đặt t = log 2 x với x ∈ 0 ; + ∞ thì t ∈ ℝ , khi đó bất phương trình trở thành t 2 + m t - m > 0 *
Để (*) nghiệm đúng với mọi t ∈ ℝ ⇔ ∆ * ≤ 0 ⇔ m 2 + 4 m ≤ 0 ⇔ m ∈ - 4 ; 0
Vậy có 5 giá trị nguyên của m thỏa mãn điều kiện
Có bao nhiêu giá trị nguyên của m để bất phương trình log 2 7 x 2 + 7 ≥ log 2 m x 2 + 4 x + m nghiệm đúng với mọi x.
A. 5
B. 4
C. 0
D. 3
Có bao nhiêu giá trị nguyên m để bất phương trình sau nghiệm đúng với mọi x ∈ 1 ; 3 : 2 2 x 2 + m x + 1 + 15 ≤ 2 − m + 8 x 2 − 3 x + 2 ?
A. 0.
B. 1.
C. 2.
D. vô số.
Hỏi có bao nhiêu giá trị nguyên của m để bất phương trình 2x - m2 + 10m – 9 > 0 nghiệm đúng với mọi x.
A. 9
B. 7
C. 10
D. 8
Chọn A.
Bất phương trình tương đương: 2x > m2 - 10m + 9
Bất phương trình đã cho nghiệm đúng với mọi x khi và chỉ khi :
m2 - 10m + 9 ≤ 0 hay 1 ≤ m ≤ 9
Mà
1/ Với giá trị nào của x thì 2 bất phương trình sau đây tương đương: (a-1)x - a+3>0 và ( a+1)x-a+2>0
2/ Bất phương trình: 5x/5 - 13/21 + x/15 < 9/25- 2x/35 có nghiệm là....
3/ Bất phương trình: 5x-1 < 2x/5 + 3 có nghiệm là...
4/ Bất phương trình: (x+4/x^2-9) -(2/x+3) < (4x/3x-x^2) có nghiệm nguyên lớn nhất là...
5/ Các nghiệm tự nhiên bé hơn 4 của bất phương trình (2x/5) -23 < 2x -16
6/ Các nghiệm tự nhiên bé hơn 6 của bất phương trình: 5x - 1/3 > 12 - 2x/3
7/ Bất phương trình: 2(x-1) - x > 3(x-1) - 2x-5 có tập nghiệm là...
8/ Bất phương trình: (3x+5/2) -1< (x+2/3)+x có tập nghiệm là...
9/ Bất phương trình: /x+2/ - /x-1/ < x - 3/2 có tập nghiệm là
10/ Bất phương trình: /x+1/ + /x-4/ > 7 có nghiệm nguyên dương nhỏ nhất là....
hoc gioi the hihiihihihhhihihihihiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
,mnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Mình không biết sin lỗi vạn
Có tất cả bao nhiêu giá trị nguyên dương của m để bất phương trình m .9 x − 2 m + 1 6 x + m .4 x ≤ 0 nghiệm đúng với mọi x ∈ 0 ; 1 ?
A. 5
B. 2
C. 4
D. 6
Đáp án D.
Ta có:
P T ⇔ m 9 4 x − 2 m + 1 6 4 x + m ≤ 0 ⇔ m 3 2 2 x − 2 m + 1 3 2 x + m ≤ 0
Đặt t = 3 2 x ; do x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 . Khi đó PT trở thành: m t 2 − 2 m + 1 t + m ≤ 0 ⇔ m t 2 − 2 t + 1 ≤ t
Rõ ràng t = 1 là nghiệm của BPT đã cho.
Với t ∈ 1 ; 3 2 ⇒ m ≤ t t − 1 2 = f t , xét f x với t ∈ 1 ; 3 2 ta có:
f ' t = t − 1 − 2 t t − 1 3 = − t − 1 t − 1 2 < 0 ∀ t ∈ 1 ; 3 2
do đó f t nghịch biến trên 1 ; 2 3 .
Do đó BPT nghiệm đúng vơi ∀ t ∈ 1 ; 3 2 ⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6
Vậy có 6 giá trị nguyên dương của m thỏa mãn.