Cho tam giác ABC.Gọi M,N lần lượt là trung điểm các cạnh AB,AC.Biết CM=BN.Chứng tỏ tam giác ABC cân
Cho tam giác ABC.Gọi M,N lần lượt là trung điểm các cạnh AB,AC.Biết CM=BN.Chứng tỏ tam giác ABC cân
https://h.vn/hoi-dap/tim-kiem?q=cho+tam+gi%C3%A1c+ABC.+G%E1%BB%8Di+M,N+l%E1%BA%A7n+l%C6%B0%E1%BB%A3t+l%C3%A0+trung+%C4%91i%E1%BB%83m+c%E1%BB%A7a+c%C3%A1c+c%E1%BA%A1nh+AB,+AC.+CMR:+MN//BC,+MN=1/2BC&id=132687
Bạn có thể chụp màn hình của bài toán theo đường link này dẫn đến đc ko ?
Tại mình cũng đánh thử rồi nhưng nó ko ra
Cho tam giác ABC.Gọi M,N lần lượt là trung điểm của AB và AC.Biết BN cắt CM tại O. Tính tỉ lệ ON:OB
\(\text{Ta có: M là trung điểm của AB}\Rightarrow CM\text{ là trung tuyến}\left(1\right)\)
\(\text{N là trung điểm của AC}\Rightarrow BN\text{ là trung tuyến}\left(2\right)\)
\(\text{Lại có: }BN\cap CM=\left\{O\right\}\left(3\right)\)
\(\text{Từ (1), (2) và (3)}\Rightarrow O\text{ là trọng tâm của }\Delta ABC\)
\(\Rightarrow OB=\dfrac{2}{3}BN\left(\text{tính chất đường trung tuyến}\right)\left(4\right)\)
\(\Rightarrow ON=\dfrac{1}{3}BN\Rightarrow2.ON=\dfrac{2}{3}BN\left(5\right)\)
\(\text{Từ (4) và (5)}\Rightarrow OB=2.ON\Rightarrow ON=\dfrac{1}{2}OB\)
\(\text{Vậy }ON=\dfrac{1}{2}OB\)
Cho tam giác ABC.Gọi M,N lần lượt là trung điểm của AB và AC.Biết BN cắt CM tại O. Tính tỉ lệ ON:OB
Giải
Xét \(\Delta ABC\), có :
M, N lần lượt là trung điểm của AB và AC ( gt )
=> CM và BN lần lượt là các đường trung tuyến ứng với AB và AC ( đ/n )
Mà 2 đường trung tuyến này cắt nhau tại O ( gt )
=> O là trọng tâm tam giác ABC ( đ/n )
=> ON = \(\frac{1}{2}\) OB ( t/c )
Vậy \(\frac{ON}{OB}\) = \(\frac{1}{2}\) ( đpcm )
cảm ơn bạn
cho bạn 1 l.i.k.e nhe
Cho tam giác ABC.Gọi M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC.Nối M với N,N với P và P với M.Tính diện tích tam giác ABC,biết diện tích tam giác MNP bằng 4,8 cm2
Cho tam giác ABC cân tại A.Gọi M là trung điểm của AB,N là trung điểm của AC.
a)Chứng minh BN=CM
b)Gọi O là giao điểm của CM và BN.Chứng minh tam giác OBC là tam giác cân
a: Xét ΔNBC và ΔMCB có
NC=MB
\(\widehat{NCB}=\widehat{MBC}\)
BC chung
Do đó: ΔNBC=ΔMCB
Suy ra: CN=MB
b: Xét ΔOBC có \(\widehat{OCB}=\widehat{OBC}\)
nên ΔOBC cân tại O
cho tam giác abc , gọi m, n lần lượt là trung điểm của cạnh ab ,ac . biết cm = bn chưng minh tam giác abc cân
Cho tam giác ABC (AC>AB). Gọi M,N,P lần lượt là trung điểm của các cạnh AB,AC,BC. AH là đường cao của tam giác ABC. a)CM: MN là trung trực của AH b)CM: Tứ giác MNPH là hình thang cân
Đừng có hỏi nữa
Câu hỏi: Cho tam giác ABC cân tại A có AH là đường cao.Gọi M,N lần lượt là trung điểm của AB và AC.Biết AH = 8cm, BC = 6cm.(cần gấp ạ)
a)Tính độ dài cạnh MN và diện tích tam giác ABC.
b)Gọi E là điểm đối xứng với H qua M. Chứng minh tứ giác AHBE là hình chữ nhật.
c)Gọi F là điểm đối xứng với A qua H. Chứng minh tứ giác ABFC là hình thoi.
d)Biết HK vuông góc với FC tại K. Gọi I là trung điểm của HK. Chứng minh BK ⊥ IF.
a: Xét ΔABC có AM/AB=AN/AC
nên MN//BC và MN=1/2BC
=>MN=3cm
\(S_{ABC}=\dfrac{1}{2}\cdot8\cdot6=24\left(cm^2\right)\)
b: Xét tứgiác AHBE co
M là trung điểm chung của AB và HE
góc AHB=90 độ
Do đó: AHBE là hình chữ nhật
c: Xét tứ giác ABFC có
H là trung điểm chung của AF và BC
AB=AC
Do đó: ABFC là hình thoi
Cho tam giác ABC cân tại A. Trên cạnh AB lấy điểm M. Trên cạnh AC lấy điểm N sao cho AM = AN.
a, Chứng minh:BN=CM
b, Gọi O là giao điểm của CM và BN.Chứng minh: Tam giác OBC cân
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)
xét TG AMC và TG ANB có
AC=AB (TG ABC cân tại A)
G A chung
AM=AN (GT)
S ra TG AMC=TG ANB (c.g.c)
S ra CM=BN (2 cạnh tg ứng)
b) Vì TG AMC=TG ANB (cmt)
S ra G ACM=G ABN (2 góc tg ứng)
* G ACM+G MCB = G ACB
G ABN+G NBC = G ABC
mà G ACM=G ABN (cmt)
G ACB=G ABC ( TG ABC cân tại A)
S raG MCB=G NBC
S ra TG OBC cân tại O
(2 góc ở đấy bằng nhau)