Cho tam giác ABC có góc B = \(45^o\), góc C = \(15^o\). Trên tia đối của tia AB lấy điểm M, D sao cho BA = AM = MD. Kẻ DE vuông góc với AC tại E
a) Chứng minh rằng tam giác AME đều
b) Chứng minh EC = ED.
1.Cho tam giác ABC vuông tại có AB<AC.Kẻ AH vuông góc với BC (H thuộc BC ) . Lấy điểm D trên AC sao cho AD=AB . Kẻ DE và DK lần lượt vuông góc với BC và AH.
a, So sánh độ dài BH và AK
b, Tính số đo góc HAE
2.Cho tam giác ABC có góc B = 45 độ , góc C=15 độ.Trên tia đối của tia AB lấy điểm M,D sao cho BA=AM=MD . Kẻ DE vuông góc với AC tại E .
a, Chứng minh tam giác AME đều
b,Chứng minh EC=ED
Ai làm giúp mình tích đúng
4/ Cho tam giác ABC vuông tại B. Kẻ BE vuông góc với AC, Trên tia đối của tia EA lấy điểm D sao cho ED=EA. Biết EC – EA = AB.
a) Chứng minh rằng tam giác ABE = tam giác DBE; AB = BD
b) Kẻ DI là phân giác của góc BDC (I thuộc BC). Chứng minh AB = CD; Tính số đo góc A, góc C
Cho tam giác ABC vuông tại A AB bé hơn AC tia phân giác của góc ABC cắt AC tại D. lấy điểm E trên cạnh BC sao cho be = AB. a) chứng minh tam giác ABD bằng tam giác ABD. b) Chứng minh DE vuông góc với AC. c) tia ED cắt BA tại M chứng minh EC = AM
a: Xét ΔABD và ΔEBD có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔABD=ΔEBD
a: Xét ΔABD và ΔEBD có
BA=BE
ˆABD=ˆEBDABD^=EBD^
BD chung
Do đó: ΔABD=ΔEBD
cho tam giác ABC có góc B = 45 độ , góc C = 15 độ . trên tia đối của tia AB lấy điểm M,D sao cho BA=AM=MD. kẻ DE vuông góc với AC tại E .
Cmr tam giác AHE đều
CmrEC=ED
điểm H ở đây thê
Cho tam giác ABC vuông tại A. Tia phân giác của góc ABC cắt cạnh AC tại D. Trên BC lấy điểm E sao cho BA =BE
a). Chứng minh tam giác ABC = tam giác EDB
b). Chứng minh DE vuông góc với BC
c). Trên tia đối của tia AB, lấy điểm M sao cho AM = EC. Chứng minh MD = CD
Bn ơi câu a phải là chứng minh tam giác ABD= tam giác EDB chứ bn?
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho AD= AE
a. Chứng minh rằng tâm giác AMB = tam giác AMC
b. Chứng minh rằng AM là tia phân giác của góc A và AM vuông góc với BC
c. Gọi K là giao điểm của AM và DE. Chưng minh AK vuông góc với DE
d. trên tia đối của tia ED lấy đeiểm F sao cho FE= MC, gọi H là trung điểm của EC. Chứng minh 3 điểm M, H, F thẳng hàng
HOI KHO ^.^
1) Cho tam giác ABC, có AB = AC, E là trung điểm của BC, trên tia đối của tia EA, lấy điểm D sao cho AE = ED.
a) Chứng minh tam giác ABE = tam giác DCE.
b) Chứng minh AB // DE.
c) Chứng minh AE vuông góc với BC
d) Tìm điều kiện của tam giác ABC để góc ADC = 45 độ.
2) Cho tam giác ABC vuông góc tại A, có AB = AC, K là trung điểm của BC.
a) Chứng minh tam giác AKB = tam giác AKC
b) Chứng minh AK vuông góc với BC
c) Từ góc C vẽ đường vuông góc với BC cắt AB tại E. Chứng minh EC // AK và tính số đo góc AEC
a) xét \(\Delta ABE\)và \(\Delta DCE\)ta có:
AE=ED(gt)
BE=EC(E là trug điểm của BC)
\(\widehat{E1}=\widehat{E2}\)(đối đỉnh)
=> \(\Delta ABE\)= \(\Delta DCE\)(c.g.c)
b) từ câu a => \(\widehat{B1}=\widehat{C2}\)(cặp góc tương ứng)
mà hai góc đó ở vị trí so le trong => AB//DC (bn viết sai đề DE)
c) xét \(\Delta ABE\)và \(\Delta ACE\)ta có:
AE là cạnh chung
AB=AC(gt)
BE=EC(E là trug điểm của BC)
=> \(\Delta ABE\)=\(\Delta ACE\)(c.c.c)
=> \(\widehat{E1}=\widehat{E3}\)(cặp góc t/ứng)
mà \(\widehat{E1}+\widehat{E3}=180^o\Rightarrow2\widehat{E1}=180^o\Rightarrow\widehat{E1}=90^o\)
=> AE vuông góc với BC (đpcm)
p/s: tớ làm 1 bài thui nha :)) dài quá
Để tui bài 2!
a) Xét tam giác AKB và tam giác AKC có:
\(AB=AC\) (gt)
\(BK=CK\) (do K là trung điểm BC)
\(AK\) (cạnh chung)
Do đó \(\Delta AKB=\Delta AKC\) (1)
b) \(\Delta AKB=\Delta AKC\Rightarrow\widehat{AKB}=\widehat{AKC}\) (hai góc tương ứng)
Mà \(\widehat{AKB}+\widehat{AKC}=180^o\) (Kề bù)
Áp dụng t/c dãy tỉ số bằng nhau: \(\frac{\widehat{AKB}}{1}=\frac{\widehat{AKC}}{1}=\frac{\widehat{ABK}+\widehat{AKC}}{1+1}=\frac{180^o}{2}=90^o\)
Suy ra AK vuông góc với BC (2)
c)\(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}=45^o\) (Do \(\widehat{KAB} +\widehat{KAB}=90^o\) và \(\Delta AKB=\Delta AKC\Rightarrow\widehat{KAB}=\widehat{KAB}\))
Mà \(\widehat{AKC}=90^o\) (CMT câu b)
Suy ra \(\widehat{KCA}=180^o-\widehat{KAC}-\widehat{AKC}=180^o-45^o-90^o=45^o\)
Mà \(\widehat{KCA}+\widehat{ACE}=90^o\) (gt,khi vẽ đường vuông góc BC cắt AB tại E)
Suy ra \(\widehat{ACE}=90^o-\widehat{KCA}=90^o-45^o=45^o\)
Hay \(\widehat{KCA}=\widehat{ACE}=45^o\).Mà hai góc này ở vị trí so le trong,nên: \(EC//AK\) (3)
Từ (1),(2) và (3) ta có đpcm.
Cho tam giác ABC nhọn. Trên nửa mặt phẳng bờ AC không chứa điểm B vẽ tia Ax vuông góc AC. Trên nửa mặt phẳng bờ AB không chứa điểm C vẽ tia Ay vuông góc AB. Trên tia Ax lấy điểm D sao cho AD=AC. Trên tia Ay lấy điểm E sao cho AE=AB
a) Chứng minh BD=EC
b) Chứng minh BD vuông góc EC
c) Kẻ AH vuông góc BC tại H. Vẽ tia đối AH cắt ED tại M. Chứng minh ME=MD
Cho tam giác ABC có AB=AC, M là trung điểm của BC. Chứng minh rằng: tam giác AMB = tam giác AMC.
a) Trên cạnh AB lấy điểm D. Từ D kẻ đường vuông góc với AM tại K và kéo dài cắt cạnh AC TẠI E. Chứng minh AD=AE.
b) Trên tia đối của tia ED lấy điểm F sao cho EF=MC, gọi H là trung điểm của EC. Chứng minh rằng: ba điểm M, H, F thẳng hàng.
Ta co AB = AC => Tam giác ABC là tam giác cân tại A
Kẻ AM
Xét hai tam giác AMB và tam giác AMC có:
BM =MC ( Vì M là trung điểm của BC)
gÓC B = góc C ( vì ABC là tam giác cân)
AB = BC ( gt)
=> Tam giác ABM = tam giác AMC ( c.g.c)