Cho tam giác ABC cân tại A, góc A = 45 độ, nội tiếp đường tròn (O;R). Tính các cạnh của tam giác ABC theo R
Bài 5: Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R). a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân. b. Tính độ dài các cạnh của tam giác ABC theo R. c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R)
a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân.
b. Tính độ dài các cạnh của tam giác ABC theo R.
c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R).
a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân.
b. Tính độ dài các cạnh của tam giác ABC theo R.
c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Cho tam giác ABC cân tại A có góc BAC= 45 độ và nội tiếp trong (O;R).
a. Chứng tỏ AO là tia phân giác của góc BAC và tam giác BOC cân.
b. Tính độ dài các cạnh của tam giác ABC theo R.
c.Nêu rõ các xác định tâm đường tròn vừa tiếp xúc với 2 cạnh của góc BOC vừa tiếp xúc với (O)
Bài 5:Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O,các đường cao AG,BE,CF cắt nhau tại H
a)Chứng minh tứ giác AEHF nội tiếp đường tròn,
b)Từ B kẻ tiếp tuyến Bx của đường tròn.Hãy tính góc ABC khi góc bằng 65 độ
có \(\widehat{AEH}=90\)
\(\widehat{AFH}\)=90
\(\widehat{AEH}+\widehat{AFH}=90+90=180\) tổng 2 góc đối nhau
⇒ tứ giác AEHF là tứ giác nội tiếp
Cho tam giác ABC nội tiếp đường tròn tâm O, bán kính R.
a) Giả sử tam giác ABC có góc bac=60 độ,góc acb=45 độ Vẽ đường kính BM của đường tròn (O). Tính diện tích tứ giác ABCM.
b)đường phân giác của góc bac cắt BC tại E và cắt (O) tại điểm D khác A. Chứng minh AD.AE=AB.AC,DA.DE=DB\(^2\)
c) Trên đoạn AD lấy điểm F sao cho DF=DB . Chứng minh BF là tia phân giác của góc ABC
Cho tam giác ABC nội tiếp (O) . Tia phân giác góc A cắt đường tròn tại M, tia phân giác góc ngoài tại đỉnh A cắt đường tròn tại N . CM:
a) tam giác MBC cân
b) CM: O, M, N thẳng hàng
b) Vì AM và AN lần lượt là hai tia phân giác của hai góc trong và ngoài tại đỉnh A của ΔABC
nên AM và AN lần lượt là hai tia phân giác của hai góc kề bù
⇔\(\widehat{MAN}=90^0\)
Xét ΔAMN có \(\widehat{MAN}=90^0\)(cmt)
nên ΔAMN vuông tại A(Định nghĩa tam giác vuông)
Suy ra: A,M,N cùng nằm trên đường tròn đường kính NM(Định lí)
mà A,M,N cùng nằm trên (O)
nên MN là đường kính của đường tròn (O)
hay O,M,N thẳng hàng(đpcm)
Cho tam giác ABC có góc A=60 độ nội tiếp (O). Đường cao AH cắt (O) tại D. Đường cap BK cắt AH tại E
a) CMR: Góc BKH= Góc BCD
b) Tính góc BEC
c) BC cố định, A di động trên cung lớn BC. Hỏi tâm I của đường tròn nội tiếp tam giác ABC chuyển động trên đường nào?
d) CMR tam giác OIE cân
Cho tam giác ABC cân tại A, nội tiếp đường tròn (O). Đường cao AH cắt đường tròn ở D. Tính số đo góc ACD
Tam giác ACD nội tiếp trong (O) có AD là đường kính nên suy ra góc CAD = 90 °