Tìm x
8. 3^x + 3. 2^x - 6^x = 24
Mọi người giúp mik bài nài nhé !
3 x 25 x 8 + 6 x 4 x 37 + 2 x 38 x 12.A = 1 x 2 + 2 x 3 + 3 x 4 + 4 x 5 + 5 x 6 +...+ 99 x 100B = 1 x 3 + 2 x 4 + 3 x 6 + 4 x8...+ 99 x 101 C = 4 + 12 + 24 + 40 + ... + 19404 + 198003 x 25 x 8 + 4 x 6 x 37 + 2 x 38 x 12
= (3 x 8) x 25 + (4 x 6) x 37 + (2 x 12) x 38
= 24 x 25 + 24 x 37 + 24 x 38
= 24 x (25 + 37 + 38)
= 24 x 100
= 2400
3 x 25 x 8 + 4 x 6 x 37 + 2 x 38 x 12
= (3 x 8) x 25 + (4 x 6) x 37 + (2 x 12) x 38
= 24 x 25 + 24 x 37 + 24 x 38
= 24 x (25 + 37 + 38)
= 24 x 100
= 2400
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
1) \(x^2-7x+6=x^3+1-7x-7=\left(x^3+1\right)-7\left(x+1\right)=\left(x+1\right)\left(x^2-x-6\right)\)
2) \(x^3-9x^2+6x+16\)
\(\left(x^3+1\right)-\left[\left(9x^2-6x+1\right)-16\right]\)
\(=\left(x^3+1\right)-\left[\left(3x-1\right)^2-16\right]=\left(x^3+1\right)-\left(3x-1+4\right)\left(3x-1-4\right)\)\(=\left(x^3+1\right)-3\left(3x-5\right)\left(x+1\right)\)\(=\left(x+1\right)\left[x^2-x+1-9x+15\right]=\left(x+1\right)\left(x^2-10x+16\right)\)
\(=\left(x+1\right)\left[x\left(x-2\right)-8\left(x-2\right)\right]\)\(\left(x+1\right)\left(x-2\right)\left(x-8\right)\)
3) \(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=x^2\left(x-5\right)-x\left(x-5\right)-6\left(x-5\right)\)
\(=\left(x-5\right)\left(x^2-x-1\right)\)
4) \(2x^3-x^2+5x+3=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2\left(2x+1\right)-x\left(2x+1\right)+3\left(2x+1\right)\)
\(=\left(2x+1\right)\left(x^2-x+3\right)\)
5) \(27x^3-27x^2+18x-4=\left(27x^3-1\right)-\left(27x^2-18x+3\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(9x^2-6x+1\right)\)
\(=\left(3x-1\right)\left(9x^2+3x+1\right)-3\left(3x-1\right)^2\)
\(=\left(3x-1\right)\left(9x^2+3x+1-9x+3\right)=\left(3x-1\right)\left(9x^2-6x+4\right)\)
gửi phần này trước còn lại làm sau !!! tk mk nka !!!
6) \(\left(x+y\right)^2-\left(x+y\right)-12\)\(=\left(x+y\right)^2-2\cdot\frac{1}{2}\left(x+y\right)+\frac{1}{4}-\frac{49}{4}\)
\(=\left(x+y-\frac{1}{2}\right)^2-\left(\frac{7}{2}\right)^2\)\(=\left(x+y-\frac{1}{2}-\frac{7}{2}\right)\left(x+y-\frac{1}{2}+\frac{7}{2}\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
7) \(\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\) (NHÂN x + 2 vs x + 5 và x + 3 vs x + 4 )
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
ĐẶT \(x^2+7x+11=y\) ta được :
\(\left(y+1\right)\left(y-1\right)-24=y^2-1-24\)
\(=y^2-25=\left(y-5\right)\left(y+5\right)\)
8) \(4x^4-32x^2+1=4x^4+4x^2+1-36x^2\)
\(=\left(2x^2+1\right)^2-\left(6x\right)^2\)\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
9) sai đề rùi bạn ơi ! đề đúng nè
\(3\left(x^4+x^2+1\right)-\left(x^2+x+1\right)^2\)
Ta thấy :
\(x^4+x^2+1=\left(x^4+2x^2+1\right)-x^2\)\(=\left(x^2+1\right)^2-x^2=\left(x^2+x+1\right)\left(x^2-x+1\right)\)
Thay vào biểu thức bài cho ta được :
\(3\left(x^2-x+1\right)\left(x^2+x+1\right)-\left(x^2+x+1\right)^2\)
\(=\left(x^2+x+1\right)\left(3x^2-3x+3-x^2-x-1\right)\)
\(=\left(x^2+x+1\right)\left(2x^2-4x+2\right)\)
\(=2\left(x^2+x+1\right)\left(x-1\right)^2\)
bài ở trên câu 3 : kết luận là \(\left(x-3\right)\left(x^2-x-6\right)\)bạn sửa lại giúp mk nka !!! Th@nk !!! Tk Mk vs
a) x^3 + 4x^2 - 29x + 24
b) x5 + x + 1
c) ( x+1 ) * ( x+3 ) * ( x+5 ) * ( x+7 ) + 15
d) ( x-1 ) * ( x-3 ) * ( x-5 ) * ( x-7 )* x - 20
e) x8 + x + 1
b) \(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+x^2+x+1=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
Phân tích các đa thức sau thành nhân tử:
1) x3 - 7x + 6
2) x3 - 9x2 + 6x + 16
3) x3 - 6x2 - x + 30
4) 2x3 - x2 + 5x + 3
5) 27x3 - 27x2 + 18x - 4
6) x2 + 2xy + y2 - x - y - 12
7) (x + 2)(x +3)(x + 4)(x + 5) - 24
8) 4x4 - 32x2 + 1
9) 3(x4 + x2 + 1) - (x2 + x + 1)2
10) 64x4 + y4
11) a6 + a4 + a2b2 + b4 - b6
12) x3 + 3xy + y3 - 1
13) 4x4 + 4x3 + 5x2 + 2x + 1
14) x8 + x + 1
15) x8 + 3x4 + 4
16) 3x2 + 22xy + 11x + 37y + 7y2 +10
17) x4 - 8x + 63
a,\(x^3-7x+6\)
\(=x^3-2x^2+2x^2-4x-3x+6\)
\(=\left(x^3-2x^2\right)+\left(2x^2-4x\right)-\left(3x-6\right)\)
\(=x^2.\left(x-2\right)+2x.\left(x-2\right)-3.\left(x-2\right)\)
\(=\left(x-2\right).\left(x^2+2x-3\right)\)
\(=\left(x-2\right).\left(x^2-x+3x-3\right)\)
\(=\left(x-2\right).\left[\left(x^2-x\right)+\left(3x-3\right)\right]\)
\(=\left(x-2\right).\left[x.\left(x-1\right)+3.\left(x-1\right)\right]\)
\(=\left(x-2\right).\left(x-1\right).\left(x+3\right)\)
b,\(x^3-9x^2+6x+16\)
\(=x^3-8x^2-x^2+8x-2x+16\)
\(=\left(x^3-8x^2\right)-\left(x^2-8x\right)-\left(2x-16\right)\)
\(=x^2.\left(x-8\right)-x.\left(x-8\right)-2.\left(x-8\right)\)
\(=\left(x-8\right).\left(x^2-x-2\right)\)
\(=\left(x-8\right).\left(x^2+x-2x-2\right)\)
\(=\left(x-8\right).\left[\left(x^2+x\right)-\left(2x+2\right)\right]\)
\(=\left(x-8\right).\left[x.\left(x+1\right)-2.\left(x+1\right)\right]\)
\(=\left(x-8\right).\left(x+1\right).\left(x-2\right)\)
c,\(x^3-6x^2-x+30\)
\(=x^3-5x^2-x^2+5x-6x+30\)
\(=\left(x^3-5x^2\right)-\left(x^2-5x\right)-\left(6x-30\right)\)
\(=x^2.\left(x-5\right)-x.\left(x-5\right)-6.\left(x-5\right)\)
\(=\left(x-5\right).\left(x^2-x-6\right)\)
\(=\left(x-5\right).\left(x^2+2x-3x-6\right)\)
\(=\left(x-5\right).\left[\left(x^2+2x\right)-\left(3x+6\right)\right]\)
\(=\left(x-5\right).\left[x.\left(x+2\right)-3.\left(x+2\right)\right]\)
\(=\left(x-5\right).\left(x+2\right).\left(x-3\right)\)
Chúc bạn học tốt!!!
d,\(2x^3-x^2+5x+3\)
\(=2x^3+x^2-2x^2-x+6x+3\)
\(=\left(2x^3+x^2\right)-\left(2x^2+x\right)+\left(6x+3\right)\)
\(=x^2.\left(2x+1\right)-x.\left(2x+1\right)+3.\left(2x+1\right)\)
\(=\left(2x+1\right).\left(x^2-x+3\right)\)
e, \(27x^3-27x^2+18x-4\)
\(=27x^3-9x^2-18x^2+6x+12x-4\)
\(=\left(27x^2-9x^2\right)-\left(18x^2-6x\right)+\left(12x-4\right)\)
\(=9x^2.\left(3x-1\right)-6x.\left(3x-1\right)+4.\left(3x-1\right)\)
\(=\left(3x-1\right).\left(9x^2-6x+4\right)\)
Chúc bạn học tốt!!!
7, \(\left(x+2\right).\left(x+3\right).\left(x+4\right).\left(x+5\right)-24\)
\(=\left[\left(x+2\right).\left(x+5\right)\right].\left[\left(x+3\right).\left(x+4\right)\right]-24\)
\(=\left(x^2+5x+2x+10\right).\left(x^2+4x+3x+12\right)-24\)
\(=\left(x^2+7x+10\right).\left(x^2+7x+12\right)-24\)(1)
Đặt \(t=x^2+7x+10\Rightarrow t+2=x^2+7x+12\)
\(\Rightarrow\left(1\right)=t.\left(t+2\right)-24\)
\(=t^2+2t-24=t^2-4t+6t-24\)
\(=\left(t^2-4t\right)+\left(6t-24\right)=t.\left(t-4\right)+6.\left(t-4\right)\)
\(=\left(t-4\right).\left(t+6\right)\) (2)
Vì \(t=x^2+7x+10\) nên:
(2) \(=\left(x^2+7x+10-4\right).\left(x^2+7x+10+6\right)\)
\(=\left(x^2+7x+6\right).\left(x^2+7x+16\right)\)
\(=\left(x^2+x+6x+6\right).\left(x^2+7x+16\right)\)
\(=\left[\left(x^2+x\right)+\left(6x+6\right)\right].\left(x^2+7x+16\right)\)
\(=\left[x.\left(x+1\right)+6.\left(x+1\right)\right].\left(x^2+7x+16\right)\)
\(=\left(x+1\right).\left(x+6\right).\left(x^2+7x+16\right)\)
Chúc bạn học tốt!!!
Tìm số tận cùng của biểu thức :
1 x 3 x 5 x 7 x ....... x 2019 + 2 x 4 x 6 x8 x.....x 2020
Huheo giúp mềnh với ạ :< Mềnh cảm ơn ạ '-')/
Chia biểu thức thành hai vế
Vế1 = 1 . 3 . 5 . 7 . .... . 2019
Vế2 = 2 . 4 . 6 . 8 . .... . 2020
Xét từng vế ta có :
Vế1 có một thừa số là 5 => Tận cùng = 5
Vế2 có thừa một thừa số là 10 => Tận cùng = 0
Cộng tận cùng của hai vế = Tận cùng của biểu thức = 0 + 5 = 5
1x3x5x7x...x2019 tận cùng là 5
2x4x6x8x...x2020 tận cùng là 0
BIỂU THỨC CÓ TẬN CÙNG LÀ :5+0=5
410x815 =
723x542/1084=
tìm x
( x -5 ) = ( x - 6 )
Trong khai triển (x-a)3 .(x+b)6, hệ số của x7 là -36 và không có số hạng chứa x8. Tìm a?
\(\left(x-a\right)^3\left(x+b\right)^6=\sum\limits^3_{k=0}C_3^kx^k.\left(-a\right)^{3-k}.\sum\limits^6_{i=0}C_6^ix^i.b^{6-i}=\sum\limits^3_{k=0}\sum\limits^6_{i=0}x^{k+i}C_3^kC_6^i\left(-a\right)^{3-k}.b^{6-i}\)
Số hạng chứa \(x^7\Rightarrow\left\{{}\begin{matrix}0\le k\le3\\0\le i\le6\\k+i=7\end{matrix}\right.\)
\(\Rightarrow\left(k;i\right)=\left(1;6\right);\left(2;5\right);\left(3;4\right)\)
\(\Rightarrow C_3^1C_6^6\left(-a\right)^2+C_3^2C_6^5\left(-a\right).b+C_3^3C_6^4b^2=-36\)
\(\Rightarrow3a^2-18ab+15b^2=-36\Rightarrow a^2-6ab+5b^2=-12\) (1)
Số hạng chứa \(x^8\Rightarrow k+i=8\)
\(\Rightarrow\left(k;i\right)=\left(2;6\right);\left(3;5\right)\)
Do ko có số hạng chứa \(x^8\Rightarrow\) hệ số của số hạng chứa \(x^8\) bằng 0
\(\Rightarrow C_3^2C_6^6\left(-a\right)+C_3^3C_6^5.b=0\)
\(\Rightarrow-3a+6b=0\Rightarrow b=\dfrac{a}{2}\)
Thế vào (1):
\(\Rightarrow a^2-3a^2+\dfrac{5}{4}a^2=-12\)
\(\Rightarrow a^2=16\Rightarrow a=\pm4\)
Tìm x
( x - 140) : 7 = 3^3 - 2^3 × 3
X - 6 :2 -( 48 -24 ) :2 :6 -3 = 0
X + 5×2 -( 32 + 16 ×3 :6 -15 ) =0
tinh nhanh
(-4)x8(25)x(-125)x(7)
(-6)x33+35(-24)
(-4).8.25.(-125).7
=[(-4x.25]x[8.(-125)]
=-100 x -1000
=100000