Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyen Son Hai
Xem chi tiết
Hiếu Thái Trung
26 tháng 11 2017 lúc 10:10

n thuộc N. =>n lớn hơn hoặc bằng 0

Xét n theo hai trường hợp:

TH1:n lớn hơn 0

Mà n lớn hơn 0 thì 3n+9*n+36 chia hết cho 3

Vì 3n chia hết cho 3, 9*n chia hết cho 3, và 36 cũng chia hết cho 3

=>Nếu n lớn hơn 0 thì 3n+9*n+36 là hợp số

TH2: n=0

Nếu n=0 thì 3n+9*n+36=30+9*0+36=1+0+36=37 là số nguyên tố(tmđb)

Vậy n=0

Quàng Thu Hằng
Xem chi tiết
Cô Hoàng Huyền
8 tháng 1 2018 lúc 14:25

Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link bên trên nhé.

Nguyen Van Tien
Xem chi tiết
Quỳnh Như
Xem chi tiết
Dương Hoàng Anh Văn ( Te...
18 tháng 6 2017 lúc 18:35

n là số 4

vì 4+1=5 là số nguyên tố

4+3=7 là số nguyên tố

4+7=11 là số nguyên tố

4+9=13 là số nguyên tố

4+13=17 là số nguyên tố

4+15=19 là số nguyên tố.

tk nha

»βέ•Ҫɦαηɦ«
14 tháng 7 2017 lúc 15:05

Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4

Cô Hoàng Huyền
8 tháng 1 2018 lúc 14:26

Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath

Em tham khảo tại link trên nhé.

Annie Trần
Xem chi tiết
Vô danh
16 tháng 3 2022 lúc 16:04

\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)

Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)

Ta có bảng:

n-3-11-1111
n-82414

Vậy \(n\in\left\{-8;2;4;14\right\}\)

Thanh Hoàng Thanh
16 tháng 3 2022 lúc 16:08

\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)

Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)

\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)

 

abcdeuytrphan3
Xem chi tiết
Thành chương Pham
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 7 2023 lúc 8:19

b: Để A nguyên thì 2n+3 chia hết cho n

=>3 chia hết cho n

=>n thuộc {1;-1;3;-3}

c: Th1: n=2

=>n+3=5(nhận)

TH2: n=2k+1

=>n+3=2k+4=2(k+2)

=>Loại

d: Gọi d=ƯCLN(2n+3;2n+5)

=>2n+5-2n-3 chia hết cho d

=>2 chia hết cho d

mà 2n+3 lẻ

nên d=1

=>PSTG

Công Nghiêm Chí
Xem chi tiết
Cấn Thị Vân Anh
27 tháng 5 2022 lúc 21:12

Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:

\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)

Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)

\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)

Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)

Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\)  => (a - 1).(a - 9) = 0

=> a = 9. Từ đó ta có n = 40

Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40

Ngoc Anh
Xem chi tiết
Nguyễn Huy Tú
22 tháng 2 2022 lúc 14:27

\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)

3n-11-12-23-34-46-612-12
nloại01loạiloạiloạiloại-1loạiloạiloạiloại

 

c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)

n-31-13-39-9
n426012-6

 

Trần Huy Linh
27 tháng 2 2023 lúc 21:18

Có đúng không

 

Nguyễn Khắc Quang
Xem chi tiết
Nguyễn Khắc Quang
1 tháng 2 2021 lúc 21:43

bạn fuck boy hơi gấu đó

Khách vãng lai đã xóa