Cho số tự nhiên n sao cho \(n⋮40\), 2n + 9 là số nguyên tố. Tìm tất cả các giá trị của n.
Tìm tất cả các số tự nhiên n sao cho 3n+9.n+36 là số nguyên tố
n thuộc N. =>n lớn hơn hoặc bằng 0
Xét n theo hai trường hợp:
TH1:n lớn hơn 0
Mà n lớn hơn 0 thì 3n+9*n+36 chia hết cho 3
Vì 3n chia hết cho 3, 9*n chia hết cho 3, và 36 cũng chia hết cho 3
=>Nếu n lớn hơn 0 thì 3n+9*n+36 là hợp số
TH2: n=0
Nếu n=0 thì 3n+9*n+36=30+9*0+36=1+0+36=37 là số nguyên tố(tmđb)
Vậy n=0
Tìm tất cả các số tự nhiên n sao cho n+1,n+3,n+7,n+9,n+13,+15 đều là số nguyên tố
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link bên trên nhé.
tìm tất cả các số tự nhiên n sao cho n^7 -n^5+2n^4+n^3-n^2+1 có đúng 1 ước nguyên tố
c. Tìm tất cả các số tự nhiên n sao cho n + 1, n + 3, n + 7, n + 9, n + 13 và n + 15 đều là số nguyên tố
n là số 4
vì 4+1=5 là số nguyên tố
4+3=7 là số nguyên tố
4+7=11 là số nguyên tố
4+9=13 là số nguyên tố
4+13=17 là số nguyên tố
4+15=19 là số nguyên tố.
tk nha
Vì: n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố. Suy ra: n phải là số chẵn (2 là số nguyên tố chẵn duy nhất)
Nếu n = 2 thì n + 13 = 15 là hợp số (loại)
Nếu n = 4 thì n + 1 = 5; n + 3 = 7; n + 9 = 11; n + 13 = 17; n + 15 = 19 đều là các số nguyên tố (nhận)
Vậy: Số tự nhiên nhỏ nhất để n + 1; n + 3; n + 7; n + 9; n + 13 và n + 15 đều là số nguyên tố là: n = 4
Câu hỏi của Nguyễn Lịch Tiểu - Toán lớp 6 - Học toán với OnlineMath
Em tham khảo tại link trên nhé.
Tìm tất cả các số nguyên n sao cho phân số sau có giá trị là số nguyên
\(\dfrac{2n+5}{n-3}\)
\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)
Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)
Ta có bảng:
| n-3 | -11 | -1 | 1 | 11 |
| n | -8 | 2 | 4 | 14 |
Vậy \(n\in\left\{-8;2;4;14\right\}\)
\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)
Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)
\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)
Tìm tất cả các số tự nhiên n sao cho\(n+1,n+3,n+7,n+9,n+13,n+15\) đều là các số nguyên tố
tìm x và y bt:X+10/5=6/Y+1
tìm số nguyên n để 2n+3/n là một số nguyên
tìm số nguyên tố n để n+3 là số nguyên tố
Cho số tự nhiên n.Hãy giải thích tại sao 2n+3/2n+5 tối giản với các giá trị của n
b: Để A nguyên thì 2n+3 chia hết cho n
=>3 chia hết cho n
=>n thuộc {1;-1;3;-3}
c: Th1: n=2
=>n+3=5(nhận)
TH2: n=2k+1
=>n+3=2k+4=2(k+2)
=>Loại
d: Gọi d=ƯCLN(2n+3;2n+5)
=>2n+5-2n-3 chia hết cho d
=>2 chia hết cho d
mà 2n+3 lẻ
nên d=1
=>PSTG
tìm tất cả n là số tự nhiên để 2n+1, 3n+1 là số chính phương, 2n+9 là số nguyên tố
Do \(2n+1\) và \(3n+1\) là các số chính phương dương nên tồn tại các số nguyên dương a,b sao cho \(2n+1\)\(=a^2\) và \(3n+1=b^2\). Khi đó ta có:
\(2n+9=25.\left(2n+1\right)-16.\left(3n+1\right)=25a^2-16b^2=\left(5a-4b\right).\left(5a+4b\right)\)
Do \(2n+9\) là nguyên tố,\(5a+4b>1\) và \(5a+4b>5a-4b\) nên ta phải có \(5a-4b=1\), tức là: \(b=\dfrac{5a-1}{4}\)
\(\Rightarrow\) ta có: \(\left\{{}\begin{matrix}2n+1=a^2\left(1\right)\\3n+1=\dfrac{\left(5a-1\right)^2}{16}\left(2\right)\end{matrix}\right.\)
Từ (1) : \(2n+1=a^2\Rightarrow n=\dfrac{a^2-1}{2}\) và a > 1 ( do n>0)
Thay vào (2): \(\dfrac{3.\left(a^2-1\right)}{2}+1=\dfrac{\left(5a-1\right)^2}{16}\) => (a - 1).(a - 9) = 0
=> a = 9. Từ đó ta có n = 40
Vậy duy nhất một giá trị n thỏa mãn yêu cầu đề bài là : n = 40
Đặt 2n+1=k\(^{^{}2}\) , 3n+1=p\(^{^{}2}\)
Từ cách đặt trên chuyển về pt: x\(^{^{}2}\) - 6y\(^{^{}2}\) = 3 (1) với x=3k, y=p
Xét pt Pell (I): x\(^{^{}2}\) - 6y\(^{^{}2}\) = 1. Nghiệm nhỏ nhất: (a,b) = (5,2)
Gọi (x',y') là nghiệm nhỏ nhất của pt (1)
Ta có y'\(^{^{}2}\) \(\le\) max { nb\(^{^{}2}\), \(\frac{-na^2}{d}\) } = max {12, -12,5} = 12 (n=3, d=6)
-> y' \(\le\) 3 (do y' nguyên dương) -> y' \(\in\) {1,2,3}
Thử trực tiếp, dễ thấy (x',y') = (3,1) thoả mãn
-> Pt (1) có dãy nghiệm:
\(x_0\) = 3, \(y_0\) = 1, \(x_{m+1}\) = 5\(x_{m}\) + 12\(y_{m}\) , \(y_{m+1}\) = 2\(x_{m}\) + 5\(y_{m}\)
-> \(k_0\) =1, \(p_0\) =1, \(k_{m+1}\) = 5\(k_{m}\) + 4\(p_{m}\) , \(p_{m+1}\) = 6\(k_{m}\) + 5\(p_{m}\)
Biến đổi, ta chuyển dãy về thành dãy (\(t_{m}\) ) được xác định qua công thức truy hồi sau:
\(t_1\) = 40, \(t_{m+1}\) = 49\(t_{m}\) + 20 + 20\(\sqrt{6t_{m^{}}^2+5t_{m}+1}\) (m nguyên dương)
Khi đó (\(t_{m}\)) vét hết tất cả các giá trị của n để 2n+1 và 3n+1 là số chính phương
=> Với mỗi m bất kì, ta tìm được một giá trị n thoả mãn.
Bài 15. Cho phân số A= 2n+ 3 / 6n +4 (n thuộc N) . Với giá trị nào của n thì A rút gọn được.
Bài 16. Tìm tất cả các số nguyên n sao cho các phân số sau có giá trị là số nguyên
A) 12/3n-1
b)2n+3/7
c)2n+5 / n-3
\(a,3n-1\inƯ\left(12\right)=\left\{\pm1;\pm2;\pm3;\pm4;\pm6;\pm12\right\}\)
| 3n-1 | 1 | -1 | 2 | -2 | 3 | -3 | 4 | -4 | 6 | -6 | 12 | -12 |
| n | loại | 0 | 1 | loại | loại | loại | loại | -1 | loại | loại | loại | loại |
c, \(\dfrac{2\left(n-3\right)+9}{n-3}=2+\dfrac{9}{n-3}\Rightarrow n-3\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
| n-3 | 1 | -1 | 3 | -3 | 9 | -9 |
| n | 4 | 2 | 6 | 0 | 12 | -6 |
Cho \(A=n^{2012}+n^{2011}+1\)
Tìm tất cả các số tự nhiên n để A nhận giá trị là một số nguyên tố.
bạn fuck boy hơi gấu đó