cho tam giác ABC, phân giác AD. trong tam giác ABD kẻ pg DE. trong tam giác ADC kẻ pg DF
chứng minh \(\frac{AF\cdot DC\cdot BE}{BD\cdot FC\cdot AE}=1\)
cho tam giác ABC có phân giác trong AD.Trọng tâm giácADB ,kẻ phân giác DE,trong tam giác ADC kẻ phân giác DF.Tính tỉ số (AF*DC*BE)/(BD*FC*AE)
CHO TAM GIÁC ABC, 3 ĐƯỜNG PHÂN GIÁC AD, BE, CF ĐỒNG QUI TẠI I. DỰA VÀO T/C ĐƯỜNG PHÂN GIÁC CỦA TAM GIÁC, EM CÓ ĐC NHỮNG TỈ LỆ THỨC NÀO? TÍNH\(\frac{AF}{BF}\cdot\frac{BD}{CD}\cdot\frac{CE}{AE}\)
Cho tam giác ABC vuông tại A có AB=c, BC=a, AC=b, đường cao AH. Lấy D nằm giữa A và C. Kẻ DE vuông góc với BC.
Chứng minh: \(\sin B=\frac{AB\cdot AD+EB\cdot ED}{BA\cdot BE+DA\cdot DE}\)
(Gợi ý cho những người không biết sin có thể làm luôn: Trong một tam giác vuông, sin góc nhọn bằng tỉ số cạnh đối chia cho cạnh huyền)
Cho tam giác ABC vuông tại A đường cao AH. Gọi EF theo thứ tự là hình chiếu của H trên AB AC
A) Chứng minh \(BC=AB\cdot sinC+AC\cdot cosC\)
B) Chứng mình \(AF\cdot AC^2=EF\cdot BC\cdot AE\)
C)Chứng minh\(AH^3=BC\cdot BE\cdot CF=BC\cdot AE\cdot AF\)
a) Ta có: \(AB.sinC+AC.cosC=AB.\dfrac{AB}{BC}+AC.\dfrac{AC}{BC}=\dfrac{AB^2}{BC}+\dfrac{AC^2}{BC}\)
\(=\dfrac{AB^2+AC^2}{BC}=\dfrac{BC^2}{BC}=BC\)
b) Vì \(\angle HEA=\angle HFA=\angle EAF=90\Rightarrow AEHF\) nội tiếp
\(\Rightarrow EF=AH\Rightarrow EF.BC.AE=AH.BC.AE\)
\(=AB.AC.AE\left(AB.AC=AH.BC=2S_{ABC}\right)=AE.AB.AC\)
\(=AH^2.AC=AF.AC.AC=AF.AC^2\)
c) Ta có: \(AH.BC.BE.CF=AB.AC.BE.CF=BE.BA.CF.CA\)
\(=BH^2.CH^2=\left(BH.CH\right)^2=\left(AH^2\right)^2=AH^4\)
\(\Rightarrow AH^3=BC.BE.CF\)
Vì AEHF là hình chữ nhật \(\Rightarrow\left\{{}\begin{matrix}AE=HF\\AF=EH\end{matrix}\right.\)
Vì \(BE\parallel HF\) \(\Rightarrow\angle CHF=\angle CBA\)
Xét \(\Delta BEH\) và \(\Delta HFC:\) Ta có: \(\left\{{}\begin{matrix}\angle BEH=\angle HFC=90\\\angle EBH=\angle FHC\end{matrix}\right.\)
\(\Rightarrow\Delta BEH\sim\Delta HFC\left(g-g\right)\Rightarrow\dfrac{BE}{EH}=\dfrac{HF}{FC}\Rightarrow\dfrac{BE}{AF}=\dfrac{AE}{CF}\)
\(\Rightarrow BE.CF=AE.AF\Rightarrow BC.AE.AF=BC.BE.CF=AH^3\)
Cho tam giác ABC vuông tại A, có AB=12cm; AC=16cm. Kẻ đường cao AH
Trong tam giác ABC kẻ phân giác AD. Trong tam giác ADB kẻ phân giác DE. Trong tam giác ADC kẻ phân giác DF
Chứng minh: EA/EB . DB/DC . FC/FA = 1
Cho tam giác ABC vuông tại A, đường cao AH(H\(\in\) BC);
a. Cm tam giác ABC đồng dạng tam giác HAC
b. cm tam giác HBA đồng dạng tam giác HAC từ đó suy ra \(AH^2=AB.BC\)
c. kẻ đường phân giác BE của tam giác ABC(E thuộc AC). Biết BH=9cm,HC=16cm.Tính AE,EC
d. trong tam giác AEB kẻ đường phân giác EM(M thuộc AB). trong tam giác BEC đường phân giác EN(N thuộc BC).CMR:
\(\frac{BM}{MA}\cdot\frac{AE}{EC}\cdot\frac{CN}{BN}=1\)
( CÂU A,B,C MÌNH BIẾT LÀM RỒI, CHỈ MONG CÁC BẠN CHỈ MÌNH CÂU D, CẢM ƠN!)
câu d dùng tính chất đường phân giác trong tam giác là ra mà em!
EM là phân giác của tam giác ABE=>BM/AM=BE/AE
EN là phân giác của tam giác BEC =>CN/BN=EC/BE
=> BM/AM * CN/BN*AE/EC= BE/AE * EC/BE*AE/EC=1
Cho tam giác ABC vuông tại A có AB=12cm, AC=16cm kẻ đường cao AH
a) chứng minh tam giác HBA và tam giác ABC
b) tính BC , AH
c) Trong tam giác ABC kẻ phân giác AD. Trong tam giác ADB kẻ phân giác DE , trong tam giác ADC kẻ phân giác DF
Chứng minh EA/EB . DB/DC . FC/FA = 1
1, cho tam giác ABC vuông tại A. CMR: \(BC^2=AB^2+AC^2\)
2, Cho tam giác ABC có đường phân giác ngoài AE. CMR: \(AE^2=EB\cdot EC-AB\cdot AC\)
3,Cho hình bình hành ABCD, có BD>AD. \(BM\perp CD,BN\perp AD\) (với \(M\in CD\) và \(N\in AD\))
CMR: \(DA\cdot DN+DC\cdot DM=BD^2\)
4, Cho tam giác ABC, 2 đường thẳng\(m//n\)thay đổi tương ứng đi qua B, C mà m,n chỉ có 1 điểm chung với tam giác ABC. Gọi M là giao điểm của AC với dường thẳng m, N là giao điểm của BA với n. Tìm giá trị lớn nhất của tổng:\(\frac{1}{MB}+\frac{1}{NC}\)
Cho tam giác ABC vuộng tại A, có AB = 12cm, AC = 16cm. Kẻ đường cao AH (H thuộc BC)
a, Chứng minh: Tam giác HBA đồng dạng Tam giác ABC
b, C/minh: AH . BC = AB . AC
c, Tính độ dài các đoạn thẳng BC, AH.
d, Trong ABC kẻ phân giác AD ( D thuộc BC). Trong ADB kẻ phân giác DE (E thuộc AB); trong ADC kẻ phân giác DF (F thuộc AC). CMR: \(\frac{EA}{EB}.\frac{DB}{DC}.\frac{FC}{FA}=1\)
Tự vẽ hình chỉ bt làm ý a,c, thôi thông cảm T^T
a,Xét ΔHAB và ΔABC
\(\widehat{BHA}=\widehat{BAH}=90^o\)
Góc B chung
\(\Rightarrow\Delta HBA\text{∼ }\Delta ABC\)
c,Xét ΔABC ta có:
BC2=AC2+AB2
BC2=162+122
BC2=400
BC=√400=20cm
Ta có ΔHAB~ΔABC(câu a)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12.16}{20}=9,6cm\)
a.Xét \(\Delta HBA\)và \(\Delta ABC\)có
\(\widehat{BHA}=\widehat{BAC}=90^0\)
\(\widehat{B}\) chung
Do đó \(\Delta HBA\)đồng dạng \(\Delta ABC\)\((\)g.g\()\)
b.Từ \(\Delta HBA\)đồng dạng \(\Delta ABC\)
\(\Rightarrow\frac{AH}{AC}=\frac{AB}{BC}\)
\(\Rightarrow AH.BC=AB.AC\)
c.Xét \(\Delta ABC\),có \(\widehat{A}\)=90 độ , theo định lý py -ta -go,ta có
\(BC^2=AB^2+AC^2\)
\(BC^2=12^2+16^2\)
\(BC^2=400\)\(\Rightarrow BC=\sqrt{400}\)
\(BC=20cm\)
Ta có \(\frac{AH}{AC}=\frac{AB}{BC}\Leftrightarrow\frac{AH}{16}=\frac{12}{20}\)
\(\Rightarrow AH=\frac{12\times16}{20}\)
\(\Rightarrow AH=9,6cm\)
Chúc bạn học tốt.Phần d mình chưa giải đc nha