Tính A=( x/2017-z) +( y/2017-x) + (z/2017-y)
biết x+y+z=2017, x,y,z là nguyên dương
cho x+y+z=2017 và 1/x+y + 1/x+z + 1/y+z = 2017
Tính A = x/y+z + y/x+z + z/x+y
Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)
= x/y+z + y/x+z + z/x+y + 1 + 1 + 1
= x/y+z + y/x+z + z/x+y + 3
=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286
Tk mk nha
Ta có :(x+y+z)(1/x+y + 1/y+z + 1/x+z) =20172
=>x/x+y +y/x+y +z/x+y + x/y+z + y/y+z + z/y+z +x/x+z + y/x+z + z/x+z=20172
=>(x/x+y + y/x+y)+(y/y+z + z/y+z)+(x/x+z + z/x+z)+(x/y+z + y/x+z + z/x+y) =4068289
=>1+1+1+A=4068289
=>A=4068286
c) Tìm các số nguyên dương x, y, z biết: (x – y)3 + (y – z)2 + 2017 |x- z| = 2019^2020
cho x + y + z = 2017
x , y , z khác 0
1 / x + 1 /y + 1/z = 1 / 2017
tính S = ( x^5 - 2017^5 ) * ( y^7 - 2017^7 ) * ( z^9 - 2017^9 )
Bài 1: Cho \(a^3+b^3+c^3=3abc\) trong đó a,b,c dương
Tính\(A=\frac{a^{2017}}{b^{2017}}+\frac{b^{2017}}{c^{2017}}+\frac{c^{2017}}{a^{2017}}\)
Bài 2: Cho x+y+z=0
Tính \(A=\frac{x^2+y^2+z^2}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)
Em tham khảo tại đây nhé.
Câu hỏi của Phạm Minh Tuấn - Toán lớp 8 - Học toán với OnlineMath
Ta có \(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2yz+2zx\)
Do x + y + z = 0 nên \(\left(x+y+z\right)^2=0\)
\(\Rightarrow x^2+y^2+z^2=-2xy-2yz-2zx\)
Vậy thì \(A=\frac{x^2+y^2+z^2}{2\left(x^2+y^2+z^2\right)-2\left(xy+yz+zx\right)}\)
\(A=\frac{-2\left(xy+yz+zx\right)}{-4\left(xy+yz+zx\right)-2\left(xy+yz+zx\right)}\)
\(A=\frac{-2\left(xy+yz+zx\right)}{-6\left(xy+yz+zx\right)}=\frac{1}{3}\)
Tìm x,y,z nguyên dương sao cho \(\frac{x+y\sqrt{2017}}{y+z\sqrt{2017}}\)thuộc Q và \(\left(x^2+y^2+z^2\right)\)là số nguyên tố
cho a,b,c,x,y,z>0
\(\left\{{}\begin{matrix}x+y+z=a\\x^2+y^2+z^2=b\\a^2=b+3034\end{matrix}\right.\)
tính M=\(x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
Xin phép được sủa đề một chút nhé :)
\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)
\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)
\(=2\left(xy+yz+zx\right)=4034\)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
Ta có:
\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)
\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)
\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(\frac{1}{xy}+\frac{1}{z\left(x+y+z\right)}\right)=0\)
\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)
\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)
\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)
Xét \(x=-y\)
Ta có:
\(\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}}+\frac{1}{-y^{2017}}+\frac{1}{y^{2017}}=\frac{1}{z^{2017}}\)
\(\frac{1}{x^{2017}+y^{2017}+z^{2017}}=\frac{1}{-x^{2017}+y^{2017}+z^{2017}}=\frac{1}{z^{2017}}\)
\(\Rightarrow\frac{1}{x^{2017}}+\frac{1}{y^{2017}}+\frac{1}{z^{2017}}=\frac{1}{x^{2017}+y^{2017}+z^{2017}}\left(dpcm\right)\)
Một cái chặt hơn nè:))
CMR nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.
CMR nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)
CMR: Nếu 1/x + 1/y + 1/z = 1/x+yz thì 1/x^2017 +1/y^2017 + 1/z^2017 = 1/(x^2017 + y^2017 + z^2017)