Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyen thi mai huong
Xem chi tiết
Nhật Hòa
Xem chi tiết
Nguyễn Văn Vũ
Xem chi tiết
Phương Thanh Nguyễn
Xem chi tiết
Nguyễn _ Nhật _Quỳnh 160...
3 tháng 7 2017 lúc 21:04

GTNN của A:

A=x2+1/x2-x+1=1+x/x2+1-x

=>A>1

suy ra:GTNN cùa A=2 với x=1

Thắng  Hoàng
11 tháng 10 2017 lúc 21:23

A=2

X=1

Nguyễn tuấn nghĩa
Xem chi tiết
Pham Quoc Cuong
8 tháng 5 2018 lúc 20:12

+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\) 

Dấu "=" <=> x=0

+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)

\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1

Đinh Thị Thùy Trang
Xem chi tiết
zZz Cool Kid_new zZz
13 tháng 12 2019 lúc 17:12

a

\(ĐKXĐ:x\in R\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)

\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)

\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)

\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)

\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)

\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)

b

Xét \(x>0\Rightarrow M>0\)

Xét \(x=0\Rightarrow M=0\)

Xét \(x< 0\Rightarrow M>0\)

Vậy \(M_{min}=0\) tại \(x=0\)

Khách vãng lai đã xóa
Đỗ Phương Thảo
Xem chi tiết
Nguyễn Hiền Linh
26 tháng 1 2020 lúc 9:51

câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được

2. xét x^2- 6x + 10

= X^2 -6x +9 +1

=(x^2 -3 )^2 +1

Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R

=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R

=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)

=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R

Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0

=> x-3 = 0

=> x=3

Vậy giá tị lớn nhất của P là 1 đạt được khi x=3

Khách vãng lai đã xóa
Doanh Phung
Xem chi tiết
Phùng Minh Quân
21 tháng 7 2019 lúc 10:20

ĐK: \(0\le x\le1\)

\(A=\frac{1}{2+\sqrt{x-x^2}}\le\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)

\(A=\frac{1}{2+\sqrt{x-x^2}}=\frac{1}{2+\sqrt{-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}}}\ge\frac{1}{2+\sqrt{\frac{1}{4}}}=\frac{2}{5}\)

Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)

Võ Thị Mai Anh
Xem chi tiết
Lê Diêu
23 tháng 4 2019 lúc 14:38

a)  \(\left(x-2\right)^2\ge0\)

\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)

Vậy giá trị nhỏ nhất \(=-1\)

b) \(\left(x-2\right)^2+5\ge5\)

\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)

\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)

Vậy giá trị lớn nhất \(=\frac{3}{5}\)

Doanh Phung
Xem chi tiết