Tìm giá trị nhỏ nhất của P=\(\frac{-x+1}{x^2-x+1}\)
Cho \(C=\left(\frac{\sqrt{x}+3}{\sqrt{x}-2}+\frac{\sqrt{x}+2}{3-\sqrt{x}}+\frac{\sqrt{x}+2}{x-5\sqrt{x}+6}\right):\left(1-\frac{\sqrt{x}}{\sqrt{x}+1}\right)\)
a) Rút gọn C
b)Tìm giá trị nguyên của x để C<0
c)với giá trị nào của x thì 1/C đạt giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
a) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{x^2}{x-2}.\left(\frac{x^2+4}{x}-4\right)+3\) có giá trị nhỏ nhất. Tìm giá trị nhỏ nhất đó.
b) Rút gọn rồi tìm giá trị của x để biểu thức: \(\frac{^{x^2}}{x-2}.\left(1-\frac{^{x^2}}{x+2}\right)-\frac{x^2+6x+4}{x}\)có giá trị lớn nhất. Tìm giá trị lớn nhất đo.
Tìm giá trị lớn nhất,giá trị nhỏ nhất của biểu thức:A=\(\frac{x+1}{x^2+x+1}\)
Tìm giá trị nhỏ nhất và giá trị lớn nhất của biểu thức: A=\(\frac{x^2+1}{x^2-x+1}\)
GTNN của A:
A=x2+1/x2-x+1=1+x/x2+1-x
=>A>1
suy ra:GTNN cùa A=2 với x=1
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức \(\frac{x^2}{x^4+x^2+1}\)
+) Min: \(A=\frac{x^2}{x^4+x^2+1}\ge0\forall x\)
Dấu "=" <=> x=0
+) Max: \(1-3A=\frac{x^4-2x^2+1}{x^4+x^2+1}=\frac{\left(x^2-1\right)^2}{x^4+x^2+1}\ge0\)
\(\Rightarrow A\le\frac{1}{3}\)Dấu "=" <=> x= 1,-1
Xét biểu thức A=\(\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\\ \)
a) Rút gọn M
b)Tìm x để M đạt giá trị nhỏ nhất và tìm giá trị nhỏ nhất đó
a
\(ĐKXĐ:x\in R\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4+\frac{1-x^4}{1+x^2}\right)\)
\(A=\left(\frac{x^2-1}{x^4-x^2+1}-\frac{1}{x^2+1}\right)\left(x^4-x^2+1\right)\)
\(=\frac{\left(x^2-1\right)\left(x^4-x^2+1\right)}{x^4-x^2+1}-\frac{x^4-x^2+1}{x^2+1}\)
\(=x^2-1-\frac{x^4-x^2+1}{x^2+1}\)
\(=-1+\frac{x^4+x^2-x^4+x^2+1}{x^2+1}\)
\(=\frac{2x^2+1}{x^2+1}-1=\frac{2x^2+1-x^2-1}{x^2+1}=\frac{x^2}{x^2+1}\)
b
Xét \(x>0\Rightarrow M>0\)
Xét \(x=0\Rightarrow M=0\)
Xét \(x< 0\Rightarrow M>0\)
Vậy \(M_{min}=0\) tại \(x=0\)
1 .Cho x > 0 . Tìm giá trị nhỏ nhất của S = \(\frac{x^2+3}{x+1}\)
2 . Tìm giá trị lớn nhất của biểu thức P = \(\frac{2018}{x^2-6x+10}\)
câu 1 x phải là dấu lớn hơn hoặc bằng mới giải được
2. xét x^2- 6x + 10
= X^2 -6x +9 +1
=(x^2 -3 )^2 +1
Nhận xét ( x^2 - 3) ^2 luôn luôn lớn hơn hoặc bằng 0 với moi x thuộc R
=> ( x^2 -3)^2+1 luôn luôn lớn hơn hoặc bằng 1 với mọi x thuộc R
=> \(\frac{2018}{X^2-6x+10}\)luôn luôn bé hơn hoặc bằng 2018 với mọi x thuộc R ( 2018/1)
=> P luôn luôn bé hơn hoặc bằng 2018với mọi x thuộc R
Dấu " =" xảy ra khi ( \(\left(x-3\right)^2\)=0
=> x-3 = 0
=> x=3
Vậy giá tị lớn nhất của P là 1 đạt được khi x=3
Tìm giá trị nhỏ nhất và giá trị lớn nhất của A =\(\frac{1}{2+\sqrt{x-x^2}}\)
ĐK: \(0\le x\le1\)
\(A=\frac{1}{2+\sqrt{x-x^2}}\le\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(\orbr{\begin{cases}x=0\\x=1\end{cases}}\)
\(A=\frac{1}{2+\sqrt{x-x^2}}=\frac{1}{2+\sqrt{-\left(x-\frac{1}{2}\right)^2+\frac{1}{4}}}\ge\frac{1}{2+\sqrt{\frac{1}{4}}}=\frac{2}{5}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=\frac{1}{2}\)
Tìm giá trị nhỏ nhất của\(\left(x-2\right)^2-1\)
Tìm giá trị nhỏ nhất của \(\frac{3}{\left(x-2\right)^2+5}\)
a) \(\left(x-2\right)^2\ge0\)
\(\Leftrightarrow\left(x-2\right)^2-1\ge-1\)
Vậy giá trị nhỏ nhất \(=-1\)
b) \(\left(x-2\right)^2+5\ge5\)
\(\Leftrightarrow\frac{1}{\left(x-2\right)^2+5}\le\frac{1}{5}\)
\(\Leftrightarrow\frac{3}{\left(x-2\right)^2+5}\le\frac{3}{5}\)
Vậy giá trị lớn nhất \(=\frac{3}{5}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của: A = \(\frac{x^2-8x+7}{x^2+1}\)