cmr với k là số tự nhiên thì \(6^{2k+1}+4\) không phải là số chính phương.
Tổng sau có thể là số chính phương không? Vì sao?
`M=` \(19^{2k}\)\(+5^{2k}\)\(+1995^{2k}\)\(+1996^{2k}\) `(` Với `k` là số tự nhiên, `k>0)`
\(M=19^{2k}+5^{2k}+1995^{2k}+1996^{2k}\left(k\in N;k>0\right)\)
\(\Rightarrow M=\overline{.....1}+\overline{.....5}+\overline{.....5}+\overline{.....6}\)
\(\Rightarrow M=\overline{......7}\)
Vì \(M\) có chữ số tận cùng là chữ số \(7\)
Nên \(M\) không phải là số chính phương.
\(6^{2k+1}+4\ \) không phải là số chính phương với k là số tự nhiên bất kì
Thật vậy:
\(6^{2k+1}+4\) chia 7 dư 3.
Có thế này mà mất thời gian để suy nghĩ ( hazzz)
1) Tìm số có 2 chữ số ab sao cho số N=ab - ba là số chính phương
2) CMR 5X² + 10 và 4x² + 4x + 6 không phải là số chính phương
3) CMR (5k)² -1 và (7k)² -1 chia hết cho 24
4) CMR với mọi n thuộc số tự nhiên ta có (7.5^2n)+(12.6^n) chia hết cho 19
a) Tìm tất cả các số tự nhiên \(k\) sao cho \(2k+1\) và \(4k+1\) đều là các số chính phương.
b) Với mỗi số tự nhiên \(k\) thỏa mãn đề bài, chứng minh rằng \(35|k^2-12k\)
2) Cho một dãy số có số hạng đầu là 16 , các số hạng sau là số tạo thành bằng cách viết chèn số 15 vào chính giữa số hạng liền trước
16,1156,111556,….
CMR: mọi số hạng của dãy đều là số chính phuơng
3) CMR: ab+1 là số chính phuơng với a=11…12(11…1 là n số), b=11…14(11…1 là n số)
4) CMR với mọi số tự nhiên a, tốn tại số tự nhiên b sao cho ab+4 là số chính phương.
5)Cho a là số gồm 2n chữ số 1, b là số gồm n+1 chữ số 1, c là số gồm n chữ số 6. CMR a+b+c+8 là số chính phương
6)CMR tích 3 số nguyên dương liên tiếp không là lập phương của 1 số tự nhiên
6) (n-1)^3 < (n-1)n(n+1) = n(n^2 -1) = n^3-n < n^3
CMR nếu số tự nhiên a không phải là số chính phương thì \(\sqrt{a}\)là số vô tỉ
Chứng minh rằng với mọi k thuộc tập N thì số A=1+ 92k+ 772k+ 19772k không là số chính phương
Cho k E N*.số tự nhiên a gồm 2k chữ số 1 và số tự nhiên b gồm k chữ số 2.chứng minh rằng a-b là 1 số chính phương
CMR: Với mọi số tự nhiên n > 1 , 2n + 3 không phải là số chính phương
+) Nếu n chẵn => n = 2k (k \(\in\) N) => 2n = 22k = 4k
=> 2n + 3 = 4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương (Số chính phương chia cho 4 chỉ dư 0 hoặc 1)
+) Nếu n lẻ => n = 2k + 1 (k \(\in\) N* vì n > 1) => 2n + 3 = 22k+1 + 3 = 2.4k + 3 , chia cho 4 dư 3 => 2n + 3 không là số chính phương
Vậy Với mọi n > 1 thì 2n + 3 không là số chính phương
=> 2n + 3 = 4k + 3 ,
chia cho 4 dư 3 => 2n + 3 không là số chính phương
Nếu n lẻ => n = 2k + 1 (k ∈ N* vì n > 1) => 2n + 3 = 22k+1 + 3 = 2.4k + 3 ,chia cho 4 dư 3 => 2n + 3 không là số chính phương
Vậy..................