tìm số nguyên x,y sao cho
2x+13y=156
3x-2y=5(Tìm x,y là số nguyên)
b, 2x+13y=156
tìm các cặp số nguyên ( x, y)
a, 3x + 17y =159
b, 2x + 13y = 156
c, 2x + 3y = 5
Tìm nghiệm nguyên của phương trình 2x + 13y=156.
Giả sử x;y là các số nguyên thỏa mãn phương trình 2x + 13y = 156
2x + 13y = 156 ⇒ 2x = 156 - 13y
Ta nhận thấy 13y và 156 đều chia hết cho 13.
Do đó 2x ⋮ 13
Đặt x = 13t (t ∈ Z) thay vào phương trình ta được:
2.13t + 13y = 156 ⇔ 26t + 13y = 156 ⇔ 2t + y = 12 ⇔ y = - 2t + 12
Vậy nghiệm nguyên của phương trình là (x = 13t; y = - 2t + 12) (với t ∈ Z)tìm cặp số nguyên x, y thỏa mãn `x^2 +xy-6y^2 +x+13y=17`
Lời giải:
$x^2+xy-6y^2+x+13y=17$
$\Leftrightarrow x^2+x(y+1)-(6y^2-13y+17)=0$
Coi đây là pt bậc 2 ẩn $x$ thì để pt có nghiệm nguyên thì:
$\Delta = (y+1)^2+4(6y^2-13y+17)$ là scp
$\Leftrightarrow 25y^2-50y+69$ là scp
Đặt $25y^2-50y+69=t^2$ với $t$ là số tự nhiên
$\Leftrightarrow (5y-5)^2+44=t^2$
$\Leftrightarrow 44=(t-5y+5)(t+5y-5)$
Đến đây là dạng pt tích đơn giản rồi. Bạn có thể tự giải.
tìm x,y
a,2x +13y =156
Tìm cặp số nguyên (x; y) thỏa mãn : 8x + 13y - xy = 106
\(8x+13y-xy=106\)
\(\Rightarrow-x\left(y-8\right)+13\left(y-8\right)=106-104\)
\(\Rightarrow\left(13-x\right)\left(y-8\right)=2\)
Từ đó tìm được x,y
Tìm các cặp số nguyên x,y thỏa mãn 7x+13y=119
gọi y=7k
=>7x+13.7.k=119
=>x+13k=17(bớt 2 vế đi 7)
=>k=1
Vì nếu k=2 thì x+13.2=x+26>17
=>y=1.7=7
=>7x+13.7=119
=>7x=119-13.7
=>7x=28
=>x=4
Vậy (x;y)=(4;7)
Tìm nghiệm nguyên của phương trình sau:
\(2x+13y=156\)
a) Ta có
2x+13y=1562x+13y=156
\(\Leftrightarrow\)13y=156−2x\(\Leftrightarrow\)13y=156−2x
\(\Leftrightarrow\)y=156−2x13<−>y=156−2x13
Để yy nguyên thì 156−2x156−2x phải chia hết cho 13.
Lại có 156−2x=2(78−x)156−2x=2(78−x). Do đó là số chẵn.
Vậy 156−2x∈B(13)={26,52,78,104,130,156}156−2x∈B(13)={26,52,78,104,130,156}
Do đó x∈{65,52,39,26,13,0}
tìm các số nguyên dương x,y thỏa mãn : 7x^2 + 13y^2 = 1820
Ta có :
1820 = 7 . 13 . 20 nên từ 7x2 + 13y2 = 1820 suy ra x \(⋮\)13 và y \(⋮\)7
đặt x = 13k ; y = 7t ( k, t \(\in\)N* ) , từ 7x2 + 13y2 = 1820 ta có :
7 . 132 . k2 + 13 . 72 . t2 = 1820
nên : 13k2 + 7t2 = 20
suy ra : k2 = 1 ; t2 = 1 vì k,t \(\in\)N* nên k = t = 1 do đó x = 13 , y = 7
Vậy ...
Cho 3 số nguyên tố p, q, r sao cho p^q + q^p = r. Chứng minh rằng trong ba số p, q, r luôn có một số bằng 2.