Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Kim Dung
Xem chi tiết
Võ Kim Dung
Xem chi tiết
Nghị Hoàng
Xem chi tiết
Đinh Trà My
Xem chi tiết
Nguyễn Phương Hiền Thảo
16 tháng 1 2016 lúc 20:14

hình như câu 2 Nguyễn Hoài Linh copy

Đây là toán nâng cao chuyên đề tính chất chia hết của một tổng, cấu trúc thi chuyên, thi học sinh giỏi các cấp. Hôm nay, Olm sẽ hướng dẫn các em giải chi tiết dạng này như sau: 

                             Giải

Chứng minh bằng phương pháp phản chứng:

Giả sử A ⋮ 121 ∀ n khi đó ta có với n = k( k \(\in\)n) thì: 

A = k2 + 3k + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N)

Với n = k + 1 thì

A = (k + 1)2 + 3(k + 1) + 5 ⋮ 121 (luôn đúng \(\forall\) k \(\in\) N) 

⇒ (k + 1).(k + 1) + 3k + 3 + 5⋮ 121

⇒ k2 + k + k + 1 + 3k + 3 + 5 ⋮ 121

⇒ (k2 + 3k + 5) + (k + k) + (1 + 3)⋮ 121

⇒ (k2 + 3k + 5) + 2k + 4 ⋮ 121

⇒ 2k + 4 ⋮ 121

⇒ 2.(k + 2) ⋮ 121

⇒ k + 2 ⋮ 121 (1)

Mà ta có: k2 + 3k + 5 ⋮ 121

               ⇒ k(k + 2) + (k + 2) + 3 ⋮ 121

              ⇒ (k + 2)(k + 1) + 3 ⋮ 121 (2)

Kết hợp (1) và (2) ta có: 3 ⋮ 121 (vô lý)

Vậy điều giả sử là sai hay 

A = n2 + 3n + 5 không chia hết cho 121 với mọi n (đpcm)

 

             

 

     

 

Nguyễn Phương Hiền Thảo
Xem chi tiết
Viên Kẹo Ước Ngọt Ngào
16 tháng 1 2016 lúc 20:29

Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 

Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

 Tích mình nhé ! Mình là người trả lời sớm nhất !

FC TF Gia Tộc và TFBoys...
16 tháng 1 2016 lúc 20:31

 Giả sử A = n^2 + 3n + 5 chia hết cho 121 
=> 4A = 4n^2 + 12n + 20 chia hết cho 121 
=> 4A = (2n + 3)^2 + 11 chia hết cho 121 (1) 
=> 4A = (2n + 3 )^2 + 11 chia hết cho 11 (vì 121 chia hết cho 11) 
Vì 11 chia hết cho 11 nên (2n + 3)^2 phải chia hết cho 11 
Lại có 11 là số nguyên tố nên 2n + 3 cũng chia hết cho 11 
=> (2n + 3)^2 chia hết cho 11^2 = 121 (2) 
Từ (1)(2) suy ra 11 phải chia hết cho 121 (vô lí) 

Vậy : n^2 + 3n + 5 không chia hết cho 121 với mọi n thuộc N

Eren
Xem chi tiết
Mỹ Duyên
27 tháng 9 2017 lúc 19:54

Giả sử tồn tại số tự nhiên n sao cho \(n^2+5n-13⋮121\)

\(\Leftrightarrow\left(n^2-6n+9\right)+11n-22⋮11\) ( Do \(121⋮11\) )

\(\Leftrightarrow\left(n-3\right)^2+11\left(n-2\right)⋮11\)

\(\Rightarrow\left(n-3\right)^2⋮11\)

Mà 11 là số nguyên tố \(\Rightarrow n-3⋮11\) \(\Rightarrow n=11a+3\left(a\in N\right)\)Thay n = 11a + 3 vào ta có:\(\left(11a+3\right)^2+5\left(11a+3\right)-13=121a^2+121a+11⋮̸121\)

\(\Rightarrow\) Vô lí điều ta đã giả sử

\(\Rightarrow\) \(\forall n\in N\) thì \(n^2+5n-13⋮̸121\) ( đpcm)

Phạm Quỳnh Anh
Xem chi tiết

Ta có \(n^2+6n+20⋮11\Rightarrow\left(n^2+2\cdot3\cdot n+3^2\right)+11⋮11\Rightarrow\left(n+3\right)^2+11⋮11\)

\(\Rightarrow\left(n+3\right)^2⋮11\). Mặt khác \(11\)chính là số nguyên tố . Do đó \(\left(n+3\right)^2\)cũng chia hết cho \(11^2\)

Tức là \(\left(n+3\right)^2⋮121\Rightarrow n^2+6n+9⋮121\)Mà \(11\)khong chia hết cho \(121\)Nên \(n^2+6n+9+11⋮̸121\Rightarrow n^2+6n+20⋮̸121\) 

\(\left(n+3\right)^2⋮11\Rightarrow\left(n+3\right)^2⋮121\).Đó là theo một công thức nhé bạn cho a^2 chia hết cho b mà b là số nguyên tố nên a^2 chia hết cho b^2. Cách chứng minh ở trên mạng bạn lên đấy kiếm nhé 

Nguyễn Tấn Phát
4 tháng 7 2019 lúc 11:07

TA THẤY: \(n^2+6n+20=\left(n^2+6n+9\right)+11=\left(n+3\right)^2+11\)

nên \(n^2+6n+20\)không là số chính phương

Mà \(\left(n^2+6n+20\right)⋮11\)

\(\Rightarrow\left(n^2+6n+20\right)\)không chia hết cho \(11^2\)

Vậy \(n^2+6n+20\)không chia hết cho 121    (ĐPCM)

Nguyễn Minh Trường
Xem chi tiết
Nguyễn Nhật Minh
Xem chi tiết
Nguyễn Khánh Ngân
3 tháng 11 2016 lúc 17:47

a) 90.a + 33.b chia hết cho 3
=30+30.a+30+3.b
=30.(3+1+1)ab
=30.5ab
=150ab
150 chia hết cho 3 hay 150ab chia hết cho 3
vậy .............