chứng minh rằng
M= a.(a-2) - a.(a-5) -7 là B( 7)
Chứng minh rằng: Nếu a là số nguyên thì:
M=a(a+2) - a(a-5) - 7 chia hết cho 7
M = a(a + 2) - a(a - 5) - 7
M = a2 + 2a - a2 + 5a - 7
M = (a2 - a2) + (2a + 5a) - 7
M = 0 + 7a - 7
M = 7(a - 1)
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
M=a.(a+2)-a.(a-5)-7
M=a.[(a+2)-(a-5)]-7
M=a.7-7
ma M>7 hoac M=0
nên M là bội của 7
nếu a lẻ thì goi a la 2n+1
N=(2n+1-2).(2n+1+3)-(2n+1-3).(2n+1+20)
N=(2n-1).(2n+4)-(2n-2).(2n+21)
N=lẻ nhân chẵn trừ chẵn nhân lẻ
N= chẵn - chẵn = chẵn nên nếu a là số lẻ thì N chẵn
nếu a chẵn thì gọi a là 2n
N=(2n-2).(2n+3)-(2n-3).(2n+20)
N=chẵn nhân lẻ trừ lẻ nhân chẵn
N=chẵn trừ chẵn = chẵn
vậy N là số chẵn với mọi a
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
a. Ta có: M= a.(a+2)-a.(a-5)-7
=a.(a+2-a+5)-7
= 7.a-7=7.(a -1) chia hết cho 7.
Vậy M là bội của 7(đpcm)
vậy còn bài thứ 2 thì như thế nào ? giải luôn đi bạn
7 nha bn
chuc bn hoc tot
happy new year
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5)-7 Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+20) Là số chẵn
Chứng minh rằng nếu a \(\in\) Z
a/M=a(a+2)-a(a-5)-7 là bội của 7
b/N=(a-2)(a+3)-(a-3)(a+2) là số chẵn
Chứng minh rằng nếu a thuộc Z thì:
a,M=a.(a+2)-a.(a-5) là bội của 7
b,N=(a-2).(a+3)-(a-3).(a+2) là số chẵn
Cho hai đa thức a = y^2 - x² z² + 2xyz + 5 và b = 2y^2 - 2x^2 z^2 + 4xyz + 7
Chứng minh rằng đa thức D = A+B+3M là một hằng số.Biết M = A - B
D=A+B+3M
=A+B+3(A-B)
=4A-2B
=4(y^2-x^2z^2+2xyz+5)-2(2y^2-2x^2z^2+4xyz+7)
=4y^2-4x^2z^2+8xyz+20-4y^2+4x^2z^2-8xyz-14
=20-14=6
chứng minh rằng nếu a thuộc Z thì
a. M=a.(a+2)-a.(a-5) Là bội của 7
b. N=(a-2).(a+3)-(a-3).(a+2) Là số chẵn