Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thế Mạnh
Xem chi tiết
Phạm Thế Mạnh
Xem chi tiết
Phạm Thế Mạnh
Xem chi tiết
Thái Xuân Đăng
10 tháng 12 2015 lúc 12:04

\(\sqrt{2}M=\sqrt{\left(a-b\right)^2+\left(a^2+b^2\right)}+\sqrt{\left(b-c\right)^2+\left(b^2+c^2\right)}+\sqrt{\left(c-a\right)^2+\left(c^2+a^2\right)}\ge\sqrt{2ab}+\sqrt{2bc}+\sqrt{2ca}\)\(\Leftrightarrow M\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Dấu bằng xảy ra khi và chỉ khi a = b, b = c, c = a \(\Leftrightarrow\)a = b = c = \(\frac{1}{3}\)(vì a + b + c = 1).

Suy ra : \(M\ge\sqrt{\frac{1}{3}.\frac{1}{3}}+\sqrt{\frac{1}{3}.\frac{1}{3}}+\sqrt{\frac{1}{3}.\frac{1}{3}}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1\)

Vậy GTNN của M là 1 khi a = b = c = \(\frac{1}{3}\)

 

Phan Mai Hoa
Xem chi tiết
Phùng Khánh Linh
1 tháng 6 2018 lúc 16:37

Violympic toán 8

Trần Quốc Lộc
2 tháng 6 2018 lúc 9:16

\(S=\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}\\ =\sqrt{a^2+2ab+b^2-3ab}+\sqrt{b^2+2bc+c^2-3bc}+\sqrt{c^2+2ca+a^2-3ca}\\ =\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\)

Áp dụng BDT : Cô-si:

\(\Rightarrow S=\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot4ab}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\cdot4bc}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\cdot4ca}\\ \ge\sqrt{\left(a+b\right)^2-\dfrac{3}{4}\cdot\left(a+b\right)^2}+\sqrt{\left(b+c\right)^2-\dfrac{3}{4}\left(b+c\right)^2}+\sqrt{\left(c+a\right)^2-\dfrac{3}{4}\left(c+a\right)^2}\\ =\sqrt{\dfrac{1}{4}\left(a+b\right)^2}+\sqrt{\dfrac{1}{4}\left(b+c\right)^2}+\sqrt{\dfrac{1}{4}\left(c+a\right)^2}\\ =\dfrac{1}{2}\left(a+b\right)+\dfrac{1}{2}\left(b+c\right)+\dfrac{1}{2}\left(c+a\right)\\ =\dfrac{1}{2}\left(a+b+b+c+c+a\right)\\ =a+b+c\\ =2019\)

Dấu "=" xảy ra khi:\(\left\{{}\begin{matrix}a=b=c\\a+b+c=2019\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=673\\b=673\\c=673\end{matrix}\right.\)

Vậy \(S_{Min}=2019\) khi \(a=b=c=673\)

Nhã Doanh
1 tháng 6 2018 lúc 16:33

cái cuối là dấu "+" à?

oooloo
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
13 tháng 8 2021 lúc 15:10

\(a^2+ab+b^2=\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{2}\left(a^2+b^2\right)\ge\dfrac{1}{2}\left(a+b\right)^2+\dfrac{1}{4}\left(a+b\right)^2=\dfrac{3}{4}\left(a+b\right)^2\)

Tương tự, ta có:

\(M\ge\dfrac{\sqrt{3}}{2}\left(a+b\right)+\dfrac{\sqrt{3}}{2}\left(b+c\right)+\dfrac{\sqrt{3}}{2}\left(c+a\right)=\sqrt{3}\left(a+b+c\right)=3\sqrt{3}\)

Dấu "=" xảy ra khi \(a=b=c=1\)

Hoang Tran
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 8 2021 lúc 21:11

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

Nguyễn Minh Huy
Xem chi tiết
vu tien dat
Xem chi tiết