Tìm n thuộc Z biết
n^2-2n+7 chia hết cho n-1
1 tìm n thuộc z biết
a, 7 chia hết n-2
2 tìm n thuộc z biết
a, 2n+5 chia hết cho n-1
b, n+3 chia hết cho 2n -1
3 tìm n thuộc z biết
a, 2n-5 chia hết cho n+1 và n+1 chia hết cho 2n+5
b, 3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
1. tìm n thuộc Z biết :
a, 7 chia hết cho n+2
b, n-2 là ước của -5
c, -10 là bội 2n-1
2.tìm n thuộc Z biết:
2n-5 chia hết cho n+1 và n+1 chia hết cho 2n-5
3n+2 chia hết cho n-2 và n-2 chia hết cho 3n+2
Tìm n thuộc Z, để:
a) 10n + 4 chia hết cho 2n + 7
b) 5n - 4 chia hết cho 3n + 1
c) 2n^2 + n - 6 chia hết cho 2n +1
1/
$10n+4\vdots 2n+7$
$\Rightarrow 5(2n+7)-31\vdots 2n+7$
$\Rightarrow 31\vdots 2n+7$
$\Rightarrow 2n+7\in Ư(31)$
$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$
$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$
2/
$5n-4\vdots 3n+1$
$\Rightarrow 3(5n-4)\vdots 3n+1$
$\Rightarroq 15n-12\vdots 3n+1$
$\Rightarrow 5(3n+1)-17\vdots 3n+1$
$\Rightarrow 17\vdots 3n+1$
$\Rightarrow 3n+1\in Ư(17)$
$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$
$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$
Do $n$ nguyên nên $n\in\left\{0; -6\right\}$
3/
$2n^2+n-6\vdots 2n+1$
$\Rightarrow n(2n+1)-6\vdots 2n+1$
$\Rightarrow 6\vdots 2n+1$
$\Rightarrow 2n+1\in Ư(6)$
Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$
$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$
Tìm n thuộc Z để:
a) (2n^2-n+2) chia hết cho (2n+1)
b) (2n^2+n-7) chia hết cho (n-2)
c) (10n^2-7n-5) chia hết cho (2n-3)
d) (2n^2+3n+3) chia hết cho (2n-1)
a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)
\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{0;-1;1;-2\right\}\)
b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)
\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)
hay \(n\in\left\{3;1;5;-1\right\}\)
c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)
\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{2;1;5;-2\right\}\)
d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)
\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{1;0;3;-2\right\}\)
tìm n thuộc z biết:
a) n-7 chia hết cho n+2
b) 2n-1 chia hết cho n+1
c)n+5 chia hết cho 2n+1
d) n^2 +1 chia hết cho n-1
1. Tìm n thuộc Z để giá trị của biểu thức A= n^3 + 2n^2 - 3n + 2 chia hết cho giá trị của biểu thức B= n^2 - n
2.a. Tìm n thuộc N để n^5 + 1 chia hết cho n^3 + 1
b. Giải bài toán trên nếu n thuộc Z
3. Tìm số nguyên n sao cho:
a. n^2 + 2n - 4 chia hết cho 11
b. 2n^3 + n^2 + 7n + 1 chia hết cho 2n - 1
c.n^4 - 2n^3 + 2n^2 - 2n + 1 chia hết cho n^4 - 1
d. n^3 - n^2 + 2n + 7 chia hết cho n^2 + 1
4. Tìm số nguyên n để:
a. n^3 - 2 chia hết cho n - 2
b. n^3 - 3n^2 - 3n - 1 chia hết cho n^2 + n + 1
c. 5^n - 2^n chia hết cho 63
Tìm n thuộc Z biết :
a)n+7 chia hết cho n+2
b) 3n+7 chia hết cho 2n+1
c)n^2+25 chia hết cho n+2
d)3n^2+5 chia hết cho n-1
e)2n^2+11 chia hết cho 3n+1
\(a)n+7⋮n+2\)
\(\Rightarrow n+2+5⋮n+2\)
Mà n + 2 chia hết cho n + 2 => \(5⋮n+2\)=> n + 2 thuộc Ư\((5)\)\(=\left\{\pm1;\pm5\right\}\)
Lập bảng :
n + 2 | 1 | -1 | 5 | -5 |
n | -1 | -3 | 3 | -7 |
Vậy : ...
tìm n thuộc Z biết n^2-2n+7 chia hết cho n-1
n2-2n+7 chia hết cho n-1
=>n2-n+7-n chia hết cho n-1
=>n(n-1)+7-n chia hết cho n-1
=>7-n chia hết cho n-1
=>-(7-n) chia hết cho n-1
=>n-7 chia hết cho n-1
=>n-1-6 chia hết cho n-1
=>6 chia hết cho n-1
=>n-1=-6;-3;-2;-1;1;2;3;6
=>n=-5;-2;-1;0;2;3;4;7
tìm n thuộc Z sao cho
3n+2 chia hết cho n-1
n^2 + 2n -7 chia hết cho n+2
3n+2 chia hết cho n-1
=> 3n-3+5 chia hết cho n-1
=> 3.(n-1)+5 chia hết cho n-1
Mà 3(n-1) chia hết cho n-1
=> 5 chia hết cho n-1
=> n-1 \(\in\)Ư(5)={-5; -1; 1; 5}
=> n \(\in\){-4; 0; 2; 6}
n2+2n-7 chia hết cho n+2
=> n.(n+2)-7 chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 E Ư(7)={-7; -1; 1; 7}
=> n E {-9; -3; -1; 5}
Tìm n thuộc Z biết:
a] n+7 chia hết cho n+1
b] 2n-1 chia hết cho n-2
a. n + 7 chia hết cho n + 1
=> n + 1 + 6 chia hết cho n + 1
Mà n + 1 chia hết cho n + 1
=> 6 chia hết cho n + 1
=> n + 1 thuộc Ư (6) = {-6; -3; -2; -1; 1; 2; 3; 6}
=> n thuộc {-7; -4; -3; -2; 0; 1; 2; 5}.
b. 2n - 1 chia hết cho n - 2
=> 2n - 4 + 3 chia hết cho n - 2
=> 2.(n - 2) + 3 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 thuộc Ư (3) = {-3; -1; 1; 3}
=> n thuộc {-1; 1; 3; 5}.
a) Ta có : n + 7 chia hết cho n + 1
=> n + 1 + 6 chia hết cho n + 1
=> 6 chia hết cho n + 1
=> n + 1 \(\in\) Ư(6) = {+1;+2;+3;+6}
Với n + 1 = 1 => n = 0
Với n + 1 = -1 => n = -2
Với n + 1 = 2 => n = 1
Với n + 1 = -2 => n = -3
Với n + 1 = 3 => n = 2
Với n + 1 = -3 => n = -4
Với n + 1 = 6 => n = 5
Với n + 1 = -6 => -7
Vậy n \(\in\) {0;-2;1;-3;2;-4;5;-7}
b) Ta có : 2n - 1 chia hết cho n - 2
=> 4n - 2 chia hết cho n - 2
=> 4(n-2) chia hết cho n - 2
=> 4 chia hết cho n - 2
=> n - 2 \(\in\) Ư(4) = {+1;+2;+4}
Tương tự câu a
Chữa câu b :
Ta có : 2n - 1 chia hết cho n - 2
=> 2n - 4 + 3 chia hết cho n - 2
=> 2(n-2) + 3 chia hết cho n - 2
=> 3 chia hết cho n - 2
=> n - 2 \(\in\) Ư(3) = {+1;+3}
Tương tự câu a