tìm số nguyên x để x2 + x + 2019 là số chính phương
Tìm tất cả các số nguyên dương x để x
2 + 8x là số chính phương.
Bài 1. Tìm tất cả các số nguyên dương x để x2 + 8x là số chính phương.
-Đặt \(x^2+8x=a^2\)
\(\Rightarrow x^2+8x+16=a^2+16\)
\(\Rightarrow\left(x+4\right)^2-a^2=16\)
\(\Rightarrow\left(x+a+4\right)\left(x-a+4\right)=16\)
-Vì \(x,a\) là các số nguyên dương \(\Rightarrow x+a+4>x-a+4\) và \(16=16.1=8.2=4.4\)
\(\Rightarrow x+a+4=16;x-a+4=1\Rightarrow x=\dfrac{9}{2};a=\dfrac{15}{2}\left(loại\right)\)
\(x+a+4=8;x-a+4=2\Rightarrow x=1;a=3\left(nhận\right)\)
\(x+a+4=4;x-a+4=4\Rightarrow x=a=0\left(nhận\right)\)
-Vậy \(x\in\left\{0;1\right\}\)
Tìm x để mệnh đề chứa biến sau đúng:
a) “ x là số chính phương và 3 < x < 20
b) “ x là số tự nhiên và x2+2x-3=0 "
c) “ x là số nguyên âm thỏa mãn x2≤4
a. \(x=\left\{4;9;16\right\}\)
b. \(x=1\)
c. \(x=\left\{-2;-1\right\}\)
Tìm tất cả các số nguyên x thỏa mãn x2+x+5 là số chính phương
Tìm số nguyên x sao cho x2+2x+2 là số chính phương
đăt. x^2 + 2x +1 +1 = n^2 ( n dương) suy ra n^2 - (x + 1)^2 = 1 hay (n-x-1)(n+x+1) = 1.1
suy ra n - x -1 = 1 và n + x + 1 =1 suy ra n = 1; x = -1.liên hệ 0972315132
tìm tất cả số nguyên x sao cho
\(\left(X-2018\right)\left(x-2019\right)\left(X-2020\right)\) là số chính phương
ko bt dung ko >:
TH1: (x-2018).(x-2019).(x-2020) khac 0
ta co: (x-2018).(x-2019).(x-2020) la 3 so lien tiep => (x-2018).(x-2019).(x-2020) chia het cho 3
ma (x-2018).(x-2019) la 2 so lien tiep => (x-2018).(x-2019).(x-2020) la so chan
Vi ko co SCP nao la so chan ma chia het cho 3 => truong hop nay loai
TH2: (x-2018).(x-2019).(x-2020) =0
=> x=2019
p/s: ko chac, sai dung nem da--ko can xay biet thu :(
Không có scp nào chẵn mà chia hết cho 3 :> 36;144;..
thieu >:
x-2018=0 => x=2018
x-2020=0=> x=2020
Vay x=2018 hay x=2019 hay x=2020
1) Tìm tất cả các số nguyên tố để p^4+8^p cũng là số nguyên tố
2)Có tồn tại 2019 số tự nhiên liên tiếp nào mà tổng các bình phương của 2019 số tự nhiên liên tiếp đó là số chính phương không ?
Tìm x nguyên dương sao cho x2+4x+2019 là số chính phương.
Mik đang cần gấp lắm. Giúp tớ với!
\(x^2+4x+2019\) là số chính phương nên có dạng \(t^2\)
\(\Rightarrow x^2+4x+2019=t^2\)
\(\Rightarrow x^2+4x+4+2015-t^2=0\)
\(\Rightarrow\left(x+2+t\right)\left(x+2-t\right)=-2015\)
Xét ước :V
Tìm số nguyên dương n để \(^{n^2+2019}\)là một số chính phương
G/S \(n^2+2019\)là số chính phương
=>\(n^2+2019=a^2\)
(=)2019=a^2-n^2
(=)2019=(a-n).(a+n)
Vì a>n mà a,b\(\inℕ\)
=>(a-n)<(a+n)
=>(a-n),(a+n)\(\in\)Ư(2018)
a-n | 1 | 2 |
a+n | 2018 | 2019 |
2n | 2019 | 2021 |
n | 1009,5 | 1010,5 |
loại | loại |
vậy không tồn tại n