Tìm GTNN của
A=\(\frac{x\left(x-6\right)+74}{13}\)
Tìm GTNN của
a/A=\(a^2+5b^2-4ab-2b+5\)
b/B=\(\left(x-y\right)^2+\left(y-3^{ }\right)^2+\left(x-3\right)^2+2021\)
Ai giúp mk vs ạ ai nhanh mk tick nha :3
b: \(B\ge2021\forall x,y\)
Dấu '=' xảy ra khi x=y=3
Tìm GTNN hoặc GTLN trong biểu thức sau \(x\left(6-x\right)+74+x\)
A = x( 6 - x ) + 74 + x
A = 6x - x2 + 74 + x
A = - x2 + 7x + 74
A = - ( x2 - 7x - 74 )
A = - [ x2 - 2 . 7 / 2 + ( 7 / 2 )2 - ( 7 / 2 )2 - 74 ]
A = - ( x - 7 / 2 )2 - 345 / 2 \(\le\)- 345 / 2
Dấu= xảy ra \(\Leftrightarrow\)x - 7 / 2 = 0
\(\Rightarrow\)x = 7 / 2
Vậy : Max A = - 345 / 2 \(\Leftrightarrow\)x = 7 / 2
\(x\left(x-6\right)+74+x\)
\(=x^2-6x+74+x\)
\(=x^2-5x+74\)
\(=\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{271}{4}\)
\(=\left(x-\frac{5}{2}\right)^2+\frac{271}{4}\ge\frac{271}{4}\)
Dấu '' = '' xảy ra
\(\Leftrightarrow x-\frac{5}{2}=0\Leftrightarrow x=\frac{5}{2}\)
Vậy..................
P/s : chưa kt lại bài nên sai bỏ qua
e tưởng\(\le\frac{-345}{4}\)
Cho x>0 Tìm GTNN
\(P=\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
Ta có :
\(P=\frac{\left(x+\frac{1}{x}^6\right)-\left(x^6+\frac{1}{x}^6\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
\(=\left(x+\frac{1}{x}\right)^3-\left(x^3+\frac{1}{x}^3\right)\)
\(=3\left(x+\frac{1}{x}\right)\ge6\left(x>0\right)\)
\(\Rightarrow Pmin=6\Leftrightarrow x=1\)
Bài 1: tìm GTLN hoặc GTNN của
a, N=-1-x-x2
b,B=3x2+4x-13
a) \(N=-1-x-x^2=-\left(x^2+x+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)
\(maxN=-\dfrac{3}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
b) \(B=3x^2+4x-13=3\left(x^2+\dfrac{4}{3}x+\dfrac{4}{9}\right)-\dfrac{35}{3}=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{35}{3}\ge-\dfrac{35}{3}\)
\(minB=-\dfrac{35}{3}\Leftrightarrow x=-\dfrac{2}{3}\)
a: Ta có: \(N=-x^2-x-1\)
\(=-\left(x^2+x+1\right)\)
\(=-\left(x^2+2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\right)\)
\(=-\left(x+\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
b: ta có: \(B=3x^2+4x-13\)
\(=3\left(x^2+\dfrac{4}{3}x-\dfrac{13}{3}\right)\)
\(=3\left(x^2+2\cdot x\cdot\dfrac{2}{3}+\dfrac{4}{9}-\dfrac{43}{9}\right)\)
\(=3\left(x+\dfrac{2}{3}\right)^2-\dfrac{43}{3}\ge-\dfrac{43}{3}\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{2}{3}\)
Cho M=\(\frac{\left(x+\frac{1}{x}\right)^6-\left(x^6+\frac{1}{x^6}\right)-2}{\left(x+\frac{1}{x}\right)^3+x^3+\frac{1}{x^3}}\)
a) Rút gọn M
b) Cho x > 0.Tìm GTNN của M
Mình cần gấp bài này !!!
1/Tìm x, biết :
a/ \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}+\frac{x}{\left(x+3\right)\left(x+34\right)}\)
b/ \(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=\frac{-1}{20}\)
tìm x biết:
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}\)\(+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
B)\(\frac{3}{\left(x-4\right)\left(x-7\right)}+\frac{6}{\left(x-7\right)\left(x-13\right)}+\frac{15}{\left(x-13\right)\left(x-28\right)}-\frac{1}{x-28}=-\frac{5}{2}\)
A) \(\frac{7}{\left(x+3\right)\left(x+10\right)}+\frac{11}{\left(x+10\right)\left(x+21\right)}+\frac{13}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{\left(x+10\right)-\left(x+3\right)}{\left(x+3\right)\left(x+10\right)}+\frac{\left(x+21\right)-\left(x+10\right)}{\left(x+10\right)\left(x+21\right)}+\frac{\left(x+34\right)-\left(x+21\right)}{\left(x+21\right)\left(x+34\right)}\)
\(=\frac{1}{x+3}-\frac{1}{x+10}+\frac{1}{x+10}-\frac{1}{x+21}+\frac{1}{x+21}-\frac{1}{x+34}\)
\(=\frac{1}{x+3}-\frac{1}{x+34}\)
\(=\frac{\left(x+34\right)-\left(x+3\right)}{\left(x+3\right)\left(x+34\right)}\)\(=\frac{x}{\left(x+3\right)\left(x+34\right)}\)
\(\Rightarrow\left(x+34\right)-\left(x+3\right)=x\)
\(\Rightarrow x=31\)
Vậy, x = 31
Bạn áp dụng: \(\frac{k}{x\cdot\left(x+k\right)}=\frac{1}{x}-\frac{1}{x+k}\) với \(x,k\inℝ;x\ne0;x\ne-k\)
Chứng minh: \(\frac{1}{x}-\frac{1}{x+k}=\frac{x+k}{x\left(x+k\right)}-\frac{x}{x\left(x+k\right)}=\frac{x+k-x}{x\left(x+k\right)}=\frac{k}{x\left(x+k\right)}\)
B) \(\frac{\left(x-4\right)-\left(x-7\right)}{\left(x-7\right)\left(x-4\right)}+\frac{\left(x-7\right)-\left(x-13\right)}{\left(x-13\right)\left(x-7\right)}+\frac{\left(x-13\right)-\left(x-28\right)}{\left(x-28\right)\left(x-13\right)}\)
\(=\frac{1}{x-7}-\frac{1}{x-4}+\frac{1}{x-13}-\frac{1}{x-7}+\frac{1}{x-28}-\frac{1}{x-13}\)
\(=\frac{1}{x-28}-\frac{1}{x-4}=-\frac{5}{2}+\frac{1}{x-28}\)
\(\Leftrightarrow\frac{1}{x-28}-\frac{1}{x-4}-\frac{1}{x-28}=-\frac{5}{2}\)
\(\Leftrightarrow\frac{1}{x-4}=\frac{5}{2}\)
=> 5x - 20 = 2
=> 5x = 22
\(\Rightarrow x=\frac{22}{5}=4,4\)
Vậy, x = 4,4
Tìm GTNN ( GTLN )
E = \(\frac{6.\left|x+5\right|+14}{3.\left|x+5\right|+6}\)
Cho các số dương x,y thỏa mãn : \ \left \sqrt{x} 1\right \left 2\sqrt{y} 4\right y\ge13\ 13 . Tìm GTNN của biểu thức : P \ \frac{x 4}{y} \frac{y 3}{x} y\
K ai làm đc hả :((
Có cách khác nè:
P=x4(x−1)3+y4(y−1)3≥2√x4y4(x−1)3(y−1)3x4(x−1)3+y4(y−1)3≥2x4y4(x−1)3(y−1)3
⇒P≥2x2y2√(x−1)3(y−1)3=2.x2x−1.y2y−1.1√(x−1)(y−1)⇒P≥2x2y2(x−1)3(y−1)3=2.x2x−1.y2y−1.1(x−1)(y−1)
Ta dễ dàng chứng minh được a2a−1≥4a2a−1≥4
⇒P≥2.4.4.1√(x−1)(y−1)≥32.1x−1+y−12≥32⇒P≥2.4.4.1(x−1)(y−1)≥32.1x−1+y−12≥32
Dấu "=" khi x=y=2
x4(x−1)3+16(x−1)≥8.x2(x−1)x4(x−1)3+16(x−1)≥8.x2(x−1)
Tương tự và cộng hai BĐT lại :
p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)p+16(x−1)+16(y−1)≥8.(x2x−1+y2y−1)
Ta xét A=x2x−1+y2y−1A=x2x−1+y2y−1
Đặt x - 1 = a và y - 1 = b, ta có A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥2√4+4=8⇒A≥8A=(a+1)2a+(b+1)2b=a+2+1a+b+2+1b≥(a+b)+4a+b+4≥24+4=8⇒A≥8
Do đó P≥8A−16(x+y)+32≥8.8−16.4+32=32P≥8A−16(x+y)+32≥8.8−16.4+32=32
Min P = 32 <=> x = y = 2