Bài 2: Tính:
a.(2a + b - 3c)2
b.(a + 2b + 3c - 4d)2
Bài 2: Tính:
a, (2a + b - 3c)2
b, (a + 2b + 3c - 4d)2
a: \(\left(2a+b-3c\right)^2\)
\(=4a^2+b^2+9c^2+4ab-12ac-6bc\)
Cho 4 số thực a, b, c, d khác 0 thỏa mãn a+2b+3c+4d khác 0 và 3a+2b +3c+4d/a=a+6b+3c+4d/2b=a+2b+9c+4d/3c=a+2b+3c+12d/4a
Cho tỉ lệ thức a/b. Với b/d khác +- 3/2
Cm : 1) 2a + 3c/2b + 3d = 2a - 3c /2b - 3d
2) a^2 + c^2/b^2+d^2
Cho a/b=c/d Với b/d khác +-3/2 . Chứng minh rằng:
a)2a+3c/2b+3d=2a-3c/2b-3d.
b)a^2+c^2/b^2+d^2=ac/bd
cho a,b,c,d thỏa mãn: \(\frac{2a+3c}{2b+3d}\)=\(\frac{3a-4c}{3b-4d}\). Tính \(\frac{4a^3d^3-b^3c^2}{4b^3c^3-a^3d^3}\)
Cho b^2=ac;c^2=bd Với b,c,d Khác 0, 2b+3c khác 4d,b^3+c^3 khác d^3
CMR
(a+b-c/b+c-d)^3=(2a+3b-4c/2b+3d-4c)^3
Giải:
Ta có: \(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
\(c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)
Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\)
\(\Rightarrow a=bk,b=ck,c=dk\)
Ta có:
\(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{bk+ck-dk}{b+c-d}\right)^3=\left[\frac{k\left(b+c-d\right)}{b+c-d}\right]^3=k^3\) (1)
\(\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^2=\left(\frac{2bk+3ck-4dk}{2b+3c-4d}\right)^3=\left[\frac{k\left(2b+3c-4d\right)}{2b+3c-4d}\right]^3=k^3\) (2)
Từ (1) và (2) suy ra \(\left(\frac{a+b-c}{b+c-d}\right)^3=\left(\frac{2a+3b-4c}{2b+3c-4d}\right)^3\) ( đpcm )
cho \(\dfrac{a}{b}\) = \(\dfrac{c}{d}\). Chứng minh \(\dfrac{2a+3c}{3a+4c}=\dfrac{2b+3d}{3b+4d}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\dfrac{2a+3c}{3a+4c}=\dfrac{2bk+3dk}{3bk+4dk}=\dfrac{2b+3d}{3b+4d}\)
cho a/b = c/d chung minh
1, ( 2a + 3c ) . ( 2b - 3d ) = ( 2a - 3c ) . ( 2b + 3d )
2, ( 4a + 3b ) . ( 4c - 3d ) = ( 4a - 3c ) . ( 4c + 3d )
a) Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Khi đó (2a + 3c)(2b - 3d)
= (2bk + 3dk)(2b - 3d)
= k(2b + 3d)(2b - 3d) (1)
(2a - 3c)(2b + 3d)
= (2bk - 2dk)(2b + 3d)
= k(2b - 3d)(2b + 3d) (2)
Từ (1)(2) => (2a + 3c)(2b - 3d) = (2a - 3c)(2b + 3d)
b) Sửa đề (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có (4a + 3b)(4c - 3d) = (4bk + 3b)(4dk - 3d) = bd(4k + 3)(4k - 3) (1)
Lại có (4a - 3b)(4c + 3d) = (4bk - 3b)(3dk + 3d) = bd(4k- 3)(4k + 3) (2)
Từ (1)(2) => (4a + 3b)(4c - 3d) = (4a - 3b)(4c + 3d)
1, Ta có: \(\frac{a}{b}=\frac{c}{d}\)
\(\Rightarrow\frac{2a}{2b}=\frac{3c}{3d}=\frac{2a+3c}{2b+3d}=\frac{2a-3c}{2b-3d}\)
\(\Rightarrow\left(2a+3c\right).\left(2b-3d\right)=\left(2a-3c\right).\left(2b+3d\right)\)
Vậy (2a + 3c).(2b - 3d) = (2a - 3c).(2b + 3d)
Câu 2 cũng tương tự nên tự làm đi
Cho a,b,c thỏa (a+2b)(2b+3c)(3c+a)#0 và
\(\frac{a^2}{a+2b}+\frac{4b^2}{2a+3b}+\frac{9c^2}{3c+a}=\frac{a^2}{2b+3c}+\frac{4b^2}{3c+a}+\frac{9c^2}{a+2b}\)
chứng minh rằng \(\frac{a}{6}=\frac{b}{3}=\frac{c}{2}\).mấy a giải giúp em cái