Cho x,y>0 thỏa mãn x+y>=4.
Tìm GTNN cảu A = x^2 + y^2 + 1/x + 45/y
1.cho x,y,z thuộc R thỏa mãn x+y+z+xy+xz+yz=6. Tìm GTNN của : x^2+y^2+z^2
2. cho x,y>0 thỏa mãn x+1/y<=1. tìm GTNN: A=x/y+y/x
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
1.cho x > 0. tìm GTNN của A = \(\dfrac{3x^4+16}{x^3}\)
2. cho x,y,z > 0 thỏa mãn x+y+z=2. tìm GTNN của biểu thức:
P=\(\dfrac{x^2}{y+z}+\dfrac{y^2}{z+x}+\dfrac{z^2}{x+y}\)
giúp mình với ạ, mình đang cần gấp trong tối nay ạ.
Cho x,y > 0 thỏa mãn x+y=1 Tìm GTNN của P=\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{4}{xy}\)
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
Lời giải:
Áp dụng BĐT Bunhiacopxky:
$(\frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy})(x^2+y^2+2xy)\geq (1+1+2)^2=16$
$\Rightarrow \frac{1}{x^2}+\frac{1}{y^2}+\frac{2}{xy}\geq \frac{16}{(x+y)^2}=16$
Áp dụng BĐT AM-GM:
$xy\leq \frac{(x+y)^2}{4}=\frac{1}{4}$
$\Rightarrow \frac{2}{xy}\geq 8$
Cộng 2 BĐT trên lại:
$P\geq 16+8=24$
Vậy $P_{\min}=24$ khi $x=y=\frac{1}{2}$
*cách này đơn giản hơn
Vì x,y>0. theo AM-GM:
\(\dfrac{1}{x^2}\)+\(\dfrac{1}{y^2}\) ≥\(\dfrac{2}{xy}\) => P≥\(\dfrac{6}{xy}\)
ta có: \(x^2\)+\(y^2\)≥ 2xy <=> (x+y)\(^2\)≥4xy <=> xy≤\(\dfrac{\left(x+y\right)^2}{4}\)=\(\dfrac{1}{4}\)
<=> \(\dfrac{6}{xy}\)≥\(\)24 hay P≥24
dấu = xảy ra khi: x=y=\(\dfrac{1}{2}\)
B1, Cho x, y>0 thỏa mãn x+y=4/3. Tìm gtnn của A=3/x+1/3y
B2, Cho x,y,z thỏa mãn x2 + 2y2 + 10z2= 2015. Tìm gtnn của K= 2xy - 8yz - 2zx
B3, Cho x>=3. Tìm gtnn của M=x + 1/x2
B4, Cho a,b,c >0 thỏa mãn a+b+c=3. Tìm gtln của S=căn (3a+bc) + căn (3b+ca) + căn (3c+ab)
bài này dễ ẹt ak
nhưng giúp mình bài này đi
chotam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách )
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)
Cho hai số x,y thỏa mãn điều kiện 4x^2+y^2=1. Tìm GTLN và GTNN cảu biểu thức (2x+2y)/(2x+y+2)