phan tich cac da thuc sau thanh nhan tư
a) \(x^3+5x^2+6x\)
b)\(x^2-6x+8\)
c)\(2x^2+98+28x-8y^2\)
phan tich da thuc thanh nhan tu : a) 3x^2 - 22xy + 4x + 8y + 7x^2 + 1 ; b) 12x^2 + 5x - 12y^2 + 12y - 10xy - 3 ; c)x^4 + 6x^3 + 11x^2 + 6x + 1
bai 166 a) 6x^2 -11x +3 phan tich cac da thuc sau thanh nhan tu
b) 2x^+3x-27
c) 2x^2-5xy-3y^2
bai 167 a) x^3+2x-3 b) x^3-7x+6 c)x^3 +5x^2 +8x +4 d) x^3 -9x^2 +6x +16
e)x^3-x^2-x-2 g ) x^3+x^2-x+2 h)x^3 -6x^2-x+30
bai 169 a) 27x^3-27x^2 +18x-4
b)2x^3-x^2+5x+3
c)(x^2-3)^2+16
Dài 166
b) 2x2+3x-27=2x2-6x+9x-27=2x(x-3)+9(x-3)=(x-3)(2x+9)
Phan tich cac da thuc thanh nhan tu:
x3- 2x2 - x + 2
x2 + 6x - y2 + 9
x^3-2x^2-x+2=x^2(x-2)-(x-2)=(x^2-1)(x-2)=(x-1)(x+1)(x-2)
a)(x3- x) - (2x2 - 2)
= x (x2 - 1) - 2 (x2 - 1)
= (x - 2) (x2-1)
a) \(x^3-2x^2-x+2=\left(x^3-x\right)+\left(-2x^2+2\right)\)
\(=x\left(x^2-1\right)-2\left(x^2-1\right)=\left(x-2\right)\left(x^2-1\right)=\left(x-2\right)\left(x+1\right)\left(x-1\right)\)
b) \(x^2+6x-y^2+9=\left(x^2+6x+9\right)-y^2\)
\(\left(x+3\right)^2-y^2=\left(x+3-y\right)\left(x+3+y\right)\)
phan tich da thuc thanh nhan tu:
a,x^4-2x^3-12x^2+12x+36
b,x^4+x^3+6x^2+5x+5
c,x^8y^8+x^4y^4+1
d,x^5-x^4+x^3-X^2+x-1
e,x^5+x^4-X63+x62-x+2
g,x(Y^2-z^2)+y(z^2-x^2)+z(x^2-y^2)
phan tich cac da thuc sau thanh nhan tu a)x^2+4x+3 b) 4x^2+4x-3 c) x^2-x-12 d)4x^4+4x^2y^2-8y^4
a) x^2+4x+3=x^2+x+3x+3=x(x+1)+3(x+1)=(x+1)(x+3)
b) 4x^2+4x-3=4x^2+4x+1-4=(2x+1)^2-4=(2x+1-2)(2x+1+2)=(2x-1)(2x+3)
c) x^2-x-12=x^2-4x+3x-12=x(x-4)+3(x-4)=(x-4)(x+3)
d) 4x^4+4x^2y^2-8y^4=4(x^4+x^2y^2-2y^4)=4(x^4-x^2y^2+2x^2y^2-2y^4)=4(x^2-y^2)(x^2+2y^2)=4(x-y)(x+y)(x^2+2y^2)
a) \(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=\left(x^2+x\right)+\left(3x+3\right)\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
c) \(x^2-x-12\)
\(=x^2-4x+3x-12\)
\(=\left(x^2-4x\right)+\left(3x-12\right)\)
\(=x\left(x-4\right)+3\left(x-4\right)\)
\(=\left(x-4\right)\left(x+3\right)\)
\(x^2+4x+3\)
\(=x^2+x+3x+3\)
\(=x\left(x+1\right)+3\left(x+1\right)\)
\(=\left(x+1\right)\left(x+3\right)\)
phan tich da thuc thanh nhan tu :
a) x3-5x2+5x-5
b) x3+42+x-6
c) x3+ y3+6x2+12x +8
a: Sửa đề: x^3-x^2+5x-5
=x^2(x-1)+5(x-1)
=(x-1)(x^2+5)
b: x^3+4x^2+x-6
=x^3-x^2+5x^2-5x+6x-6
=(x-1)(x^2+5x+6)
=(x-1)(x+2)(x+3)
c: \(=\left(x+2\right)^3+y^3\)
\(=\left(x+2+y\right)\left(x^2+4x+4-xy-2y+y^2\right)\)
phan tich da thuc thanh nhan tu
a) x^3+x+2
b) x^3+3x^2-4
c) x^4+x^3+6x^2+5x+5
a)\(3x^2-11x+6=3x^2-9x-2x+6=3x\left(x-3\right)-2\left(x-3\right)=\left(3x-2\right)\left(x-3\right)\)
b)\(8x^2+10x-3=8x^2+12x-2x-3=4x\left(2x+3\right)-\left(2x+3\right)=\left(4x-1\right)\left(2x+3\right)\)
c)\(8x^2-2x-1=8x^2+2x-4x-1=2x\left(4x+1\right)-\left(4x+1\right)=\left(2x-1\right)\left(4x+1\right)\)
Phan tich da thuc sau thanh nhan tu
6x^3+x^2+x+1
\(6x^3+x^2+x+1=\left(6x^3+3x^2\right)+\left(-2x^2-x\right)+\left(2x+1\right)\)
\(=3x^2.\left(2x+1\right)-x.\left(2x+1\right)+\left(2x+1\right)=\left(2x+1\right)\left(3x^2-x+1\right)\)
K sai dau
giao an truong Tran dai nghia do
phan tich da thuc thanh nhan tu :
5x^2 + 5xy - x - y
7x - 6x^2 - 2
5x^2 + 5xy - x - y
=5x.(x+y)-(x+y)
=(x+y)(5x-1)
7x - 6x^2 - 2
=-6x2+3x+4x-2
=-3x.(2x-1)+2.(2x-1)
=(2x-1)(2-3x)