\(\sqrt{\frac{25}{49}+\left(-2017^0\right)-\left[\frac{-2}{7}\right].\left(\frac{1}{2}\right)^3}\)
Bài 1: Thực hiện phép tính:
a,\(\left(\frac{-3}{4}+\frac{2}{7}\right):\frac{2}{7}+\left(\frac{-1}{4}+\frac{5}{7}\right):\frac{2}{3}\)
b,\(\left(-\frac{1}{3}\right)^2\cdot\frac{4}{11}+\frac{7}{11}\cdot\left(-\frac{1}{3}\right)^2\)
c, \(\left(-\frac{1}{7}\right)^0-2\frac{4}{9}\cdot\left(\frac{2}{3}\right)^2\)
d,\(\frac{2^7\cdot9^2}{3^3\cdot2^5}\)
e,\(\left(\frac{1}{3}-\frac{5}{6}\right)^2+\frac{5}{6}:2\)
f,\(\left(9\frac{2}{4}:5,2+3.4\cdot2\frac{7}{34}\right):\left(-1\frac{9}{16}\right)\)
g,\(\sqrt{25}-3\sqrt{\frac{4}{9}}\)
h,\(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
i,\(\left(-\frac{1}{2}\right)^4+\left|-\frac{2}{3}\right|-2007^0\)
k,\(\left(-2\right)^3+\frac{1}{2}:\frac{1}{8}-\sqrt{25}+\left|-64\right|\)
m,\(\left(-3\right)^2\cdot\frac{1}{3}-\sqrt{49}+\left(-5\right)^3:\sqrt{25}\)
n,\(\frac{\sqrt{3^2+\sqrt{39^2}}}{\sqrt{91^2}-\sqrt{\left(-7\right)^2}}\)
Rút gọn :
M = \(\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}+....+\frac{1}{49.\left(\sqrt{24}+\sqrt{25}\right)}\)
1) Rút gọn biểu thức theo là cách hợp lý:
A = \(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
2) Tính hợp lý:
M = \(1-\frac{5}{\sqrt{196}}-\frac{5}{\left(2\sqrt{21}\right)^2}-\frac{\sqrt{25}}{204}-\frac{\left(\sqrt{5}\right)^2}{374}\)
3) Có hay không giá trị của x thỏa mãn điều kiện sau:
\(2002.\sqrt{\left(1+x\right)^2}+2003.\sqrt{\left(1-x\right)^2}=0\)
4) Tìm các số x, y, z thỏa mãn đẳng thức:
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+\left|x+y+z\right|=0\)
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
Chứng minh
\(\frac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}+\)+\(\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}\)+....+\(\frac{1}{49\left(\sqrt{24}+\sqrt{25}\right)}\)<\(\frac{2}{5}\)
Chứng minh
\(\frac{1}{3\left(1+\sqrt{2}\right)}+\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}+\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}+...+\frac{1}{97\left(\sqrt{48}+\sqrt{49}\right)}< \frac{3}{7}\)
CM;
\(\frac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}\)+\(\frac{1}{5\left(\sqrt{3}+\sqrt{2}\right)}\)+\(\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}\)+....+\(\frac{1}{49\left(\sqrt{24}+\sqrt{25}\right)}\)<\(\frac{2}{5}\)
\(\frac{1}{3\left(\sqrt{1}+\sqrt{2}\right)}\)+\(\frac{1}{5\left(\sqrt{2}+\sqrt{3}\right)}\)+\(\frac{1}{7\left(\sqrt{3}+\sqrt{4}\right)}\)+...+\(\frac{1}{49\left(\sqrt{24}+\sqrt{25}\right)}\)<\(\frac{2}{5}\)
) Tính giá trị của biểu thức sau bằng các hợp lý : A=\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{\left(7\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}\)
b) Tính: B=\(\left(1-\frac{1}{1+2}\right)\left(1-\frac{1}{1+2+3}\right)...\left(1-\frac{1}{1+2+3+...+2017}\right)\)
c) Giả sử x+y+z=2017 và \(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}=\frac{1}{672}\)
TÍNH tổng C=\(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\)
d) Cho ba sô x,y,z thỏa mãn xyz=2017
Tính tổng: D= \(\frac{2017x}{xy+2017x+2017}+\frac{y}{yz+y+2017}+\frac{z}{zx+z+1}\)
làm lần lượt nhá,dài dòng quá khó coi.ahihihi!
\(\frac{1-\frac{1}{\sqrt{49}}+\frac{1}{49}-\frac{1}{7\left(\sqrt{7}\right)^2}}{\frac{\sqrt{64}}{2}-\frac{4}{7}+\left(\frac{2}{7}\right)^2-\frac{4}{343}}=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4-\frac{4}{7}+\frac{4}{49}-\frac{4}{343}}\)
\(=\frac{1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}}{4\left(1-\frac{1}{7}+\frac{1}{49}-\frac{1}{343}\right)}=\frac{1}{4}\)
b
Tổng quát:\(1-\frac{1}{1+2+3+....+n}=1-\frac{1}{\frac{n\left(n+1\right)}{2}}=1-\frac{2}{n\left(n+1\right)}=\frac{n^2+n-2}{n\left(n+1\right)}=\frac{\left(n^2+2n\right)-\left(n+2\right)}{n\left(n+1\right)}\)
\(=\frac{n\left(n+2\right)-\left(n+2\right)}{n\left(n+1\right)}=\frac{\left(n-1\right)\left(n+2\right)}{n\left(n+1\right)}\)
Thay số vào,ta được:
\(\frac{\left(2-1\right)\left(2+2\right)}{2\left(2+1\right)}\cdot\frac{\left(3-1\right)\left(3+2\right)}{3\left(3+1\right)}\cdot.....\cdot\frac{\left(2017-1\right)\left(2017+2\right)}{2017\left(2017+1\right)}\)
\(=\frac{1\cdot4}{2\cdot3}\cdot\frac{2\cdot5}{3\cdot4}\cdot...\cdot\frac{2016\cdot2019}{2017\cdot2018}\)
\(=\frac{1\cdot2\cdot3\cdot...\cdot2016}{2\cdot3\cdot4\cdot...\cdot2017}\cdot\frac{4\cdot5\cdot6\cdot...\cdot2019}{3\cdot4\cdot5\cdot...\cdot2018}\)
\(=\frac{1}{2017}\cdot\frac{2019}{3}=\frac{2019}{6051}\)
Tính nhanh:
\(\frac{\left(\frac{1}{14}-\frac{\sqrt{2}}{7}+\frac{3\sqrt{2}}{25}\right).\left(-\frac{4}{15}\right)}{\:\left(\frac{1}{10}+\frac{3\sqrt{2}}{25}-\frac{\sqrt{2}}{5}\right).\left(\frac{5}{7}\right)}\)