Tìm GTLN ( hoặc GTNN ) của biểu thức sau: \(\frac{6x-2}{3x^2+1}\)
Tìm GTLN hoặc GTNN của biểu thức
\(A=\frac{2x^2+6x+10}{x^2+3x+3}\)
\(A=\frac{2x^2+6x+10}{x^2+3x+3}=\frac{2\left(x^2+3x+3\right)+4}{x^2+3x+3}=2+\frac{4}{x^2+3x+3}\)
Để A đạt GTLN thì x2+3x+3 bé nhất
mà x2+3x+3=\(x^2+3.\frac{2}{3}x+\frac{2^2}{3^2}+\frac{23}{9}=\left(x+\frac{2}{3}\right)^2+\frac{23}{9}\ge\frac{23}{9}\)
Dấu "=" xảy ra khi \(x+\frac{2}{3}=0=>x=\frac{-2}{3}\)
lúc đó \(A=2+\frac{4}{\frac{23}{9}}=2+4.\frac{9}{23}=2+\frac{36}{23}=\frac{82}{23}\)
Vậy GTLN của \(A=\frac{82}{23}\)khi \(x=\frac{-2}{3}\)
Tìm GTNN hoặc GTLN của biểu thức sau:
A= -4 - x^2 +6x
B= 3x^2 -5x +7
A= -4 - x^2 +6x
=-(x2-6x+9)+5
=-(x-3)2+5\(\le\)5
Dấu "=" xảy ra khi x=3
Vậy...............
B= 3x^2 -5x +7
\(=3\left(x^2-2.\frac{5}{6}x+\frac{25}{36}\right)-\frac{59}{12}\)
\(=3\left(x-\frac{5}{6}\right)^2-\frac{59}{12}\ge\frac{-59}{12}\)
Dấu "=" xảy ra khi \(x=\frac{5}{6}\)
Vậy.................
Tìm GTNN hoặc GTLN của biểu thức
\(A=\frac{2x^2+6x+10}{x^2+3x+3}\)
\(A=\frac{3\left(2x^2+6x+10\right)}{3\left(x^2+3x+3\right)}=\frac{6x^2+18x+30}{3\left(x^2+3x+3\right)}=\frac{22\left(x^2+3x+3\right)-16x^2-48x-36}{3\left(x^2+3x+3\right)}\)
\(A=\frac{22}{3}-\frac{16x^2+48x+36}{3\left(x^2+3x+3\right)}=\frac{22}{3}-\frac{\left(4x+6\right)^2}{3\left(x^2+3x+3\right)}\)
Do \(\left\{{}\begin{matrix}\left(4x+6\right)^2\ge0\\x^2+3x+3=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}>0\end{matrix}\right.\) \(\Rightarrow\frac{\left(4x+6\right)^2}{3\left(x^2+3x+3\right)}\ge0\)
\(\Rightarrow A\le\frac{22}{3}\Rightarrow A_{max}=\frac{22}{3}\) khi \(4x+6=0\Rightarrow x=-\frac{3}{2}\)
tìm GTLN hoặc GTNN của biểu thức sau \(\frac{1}{2+\sqrt{6-x^2}}\)
Hiện tại tớ chưa tìm được cách nào hay hơn (Cách này thường là lớp 6 dùng)
Ta có \(\sqrt{6-x^2}\ge0\Rightarrow2 +\sqrt{6-x^2}\ge2\)
Vậy để \(\frac{1}{2+\sqrt{6-x^2}}\) có giá trị lớn nhất thì \(2+\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow\sqrt{6-x^2}\) có giá trị bé nhất \(\Rightarrow6-x^2\) có giá trị bé nhất mà số đó lại lớn hơn 0 \(\Rightarrow x=\sqrt{6}\).
Vậy giá trị lớn nhất là \(\frac{1}{2}\)
Tương tự thì để giá trị bé nhất thì \(2+\sqrt{6-x^2}\) có giá trị lớn nhất và giá trị này = \(\frac{1}{2+\sqrt{6}}\)
Như Nam có câu trả lời hay đó !!!
Vừa zễ hiểu, vừa zễ làm !
Thanks
Tìm GTLN hoặc GTNN của biểu thức:
3x2 - 6x +1
Giúp Mình nhé các bạn cảm ơn các bạn nhiều <3
\(3x^2-6x+1\)
\(=3\left(x^2-2x+\frac{1}{3}\right)\)
\(=3\left(x-1\right)^2-\frac{2}{3}\)
vì \(3\left(x-2\right)^2\ge0\)nên \(3\left(x-1\right)^2-\frac{2}{3}\ge\frac{2}{3}\)
vậy GTNN của biểu thức =2/3
minh tống ơi chắc là sai đấy
\(3x^2-6x+1\)\(=3\left[\left(x\right)^2-2\left(x\right)\left(1\right)+\left(1\right)^2-\left(1\right)^2+\frac{1}{3}\right]\)\(=3\left(x-1\right)^2-2\)
Vì \(3\left(x-1\right)^2\ge0\)
Nên \(3\left(x-1\right)^2-2\ge-2\)
Dấu "=" xảy ra khi \(x-1=0\Leftrightarrow x=1\)
Vậy GTNN = -2 khi x = 1
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
Tìm GTNN hoặc GTLN của các biểu thức sau:
E= 3x^2 + y^2 +2xy -2x -4y +20
Tìm GTNN hoặc GTLN của biểu thức sau
M=3x^4+y^2-2x^2y-2x^2-2y+31
tìm GTLN hoặc GTNN của biểu thức sau:
3x - 3x2 - 1
A=3x - 3x2 -1
⇔x + 2x -2x2 - x2 - 2 + 1
⇔(x - 2x2 +1) +(2x-2)
⇔(x-1)2 +2(x-1)
⇔(x-1)(x-1+2)
⇔(x-1)(x+1)
⇔ x2 -1 ≥-1
dấu "=" xảy ra khi
x2 =0 ⇔ x =0
vậy MinA= -1 khi x =0
\(3x-3x^2-1=-3\left(x^2-x+\dfrac{1}{3}\right)=-3\left(x^2-2x\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{3}\right)=-3\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{4}\)Ta có
\(\left(x-\dfrac{1}{2}\right)^2\ge0\Rightarrow-3\left(x-\dfrac{1}{2}\right)\le0\Rightarrow-3\left(x-\dfrac{1}{2}\right)-\dfrac{1}{4}\le-\dfrac{1}{4}\)
Vậy Amin=\(-\dfrac{1}{4}\) đạt được khi \(x-\dfrac{1}{2}=0\Rightarrow x=\dfrac{1}{2}\)
Nếu sai thì thui nhé tại mình mới hk