A=2+2^{2^2}^{+2^3+...+2^{100}}^{2^2}^{+2^3+...+2^{100}}hãy viết A dưới dạng 1 lũy thừa
Cho A = 2+2^2+2^3+.......+2^100. Hãy viết A-2 dưới dạng 1 lũy thừa.
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A-2=2^{101}-2-2=2^{101}-4\)
Tôi cũng thấy khó bài này.
cho A= 2 + 2mũ 2 + 2 mũ 3 +....+ 2 mũ 100
Hãy viết A+2 dưới dạng 1 lũy thừa
Ta có: \(A=2+2^2+2^3+...+2^{100}\)
\(2A=2^2+2^3+2^4+...+2^{101}\)
\(2A-A=2^{101}-2\)
Hay \(A=2^{101}-2\)
Vậy \(A=2^{101}-2\)
_Học tốt_
bạn trả lời quá chậm
cho A =2+22+23+...+2100.hãy viết A +2 dưới dạng một lũy thừa
\(A=2+2^2+2^3+...+2^{99}+2^{100}\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{100}+2^{101}\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A+2=2^{101}-2+2\)
\(\Rightarrow A+2=2^{101}\)
\(A=2+2^2+2^3+...+2^{100}\)
\(\Rightarrow2A=2.\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow2A=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow2A-A=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2+2^2+2^3+...+2^{100}\right)\)
\(\Rightarrow A=2^{101}-2\)
\(\Rightarrow A+1=2^{101}-2+2\)
\(\Rightarrow A+2=2^{101}\)
Vậy A+2=2101
Dùng hệ cơ số nhị để viết A=2^1+2^2+2^3+...+2^100+2 dưới dạng một lũy thừa
Ta coi \(B=2^1+2^2+2^3+...+2^{100}\)
\(\Rightarrow A=B+2\)
Ta có:
\(B=2^1+2^2+2^3+...+2^{100}\)
\(\Rightarrow2B=\left(2^1+2^2+2^3+...+2^{100}\right).2\)
\(=2^2+2^3+2^4+...+2^{101}\)
\(\Rightarrow B=2B-B=\left(2^2+2^3+2^4+...+2^{101}\right)-\left(2^1+2^2+2^3+...+2^{100}\right)\)
\(=2^{101}-2\)
\(\Rightarrow A=2^{101}-2+2=2^{101}\)
Bài 2: A=1+2+2^2+3^2+....+2^200
Viết A+1 dưới dạng lũy thừa
Bài 3: B=3+3^2+3^3+...+3^2005
Chứng tỏ 2B+3 là lũy thừa của B
Bài 4:Tính: C=1^2+2^2+3^2+...+100^2
Giúp nhanh nha, mình tick cho
A=1+2+22+23+...+2200
2A=2+22+23+24+...+2201
2A-A=(2+22+23+24+...+2201) - (1+2+22+23+...+2200)
A=2201-1
=>A+1=2201
B=3+32+33+...+32005
3B=32+33+34+...+32006
3B-B=(32+33+34+...+32006) - (3+32+33+...+32005)
2B=32006-3
2B+3=32006 là lũy thừa của 3 (đpcm)
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = ( 2 + 22 + 23 + 24 + ... + 2201 ) - ( 1 + 2 + 22 + 23 + ... + 2200 )
A = 2201 - 1
a.2A= 2+2^2+2^3+....+2^201
2A-A= như trên với cái đầu trừ đi nhau còn lạị số cuối và số đầu là 2^201-1 vậy A = 2^201-1
b. làm như trên chỉ thất thanh 3B - b = 2B nhé
c.như câu a thôi nhé nhớ
1.A=1+2+2^2+2^3+.....+2^200.Hãy viết A+1 dưới dạng 1 lũy thừa.
2.C=3+3^2+3^3+.....+3^2005.Hãy chứng minh rằng 2B+3 là 1 lũy thừa của 3.
1) A = 1+2+2\(^2\) + ... + \(2^{200}\)
2A = 2 + 2\(^2\) + 2\(^3\) + ... + 2\(^{201}\)
2A - A = 2 + 2\(^2\) +2\(^3\) + ... + \(2^{201}\) - 1 - 2 - ... - 2\(^{200}\)
A = 2\(^{201}\) - 1
A+1 = 2\(^{201}\)
Vậy a + 1 = 2\(^{201}\)
2) C = 3 + 3\(^2\) + 3\(^3\) + ... + 3\(^{2005}\)
3C = 3\(^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\)
3C - C = \(3^2\) + 3\(^3\) + 3\(^4\) + ... + 3\(^{2006}\) - 3 - 3\(^2\) - 3\(^3\) - ... - 3\(^{2005}\)
2C = 3\(^{2006}\) - 3
2C+3 = 3\(^{2006}\)
Vậy 2C + 3 là luỹ thừa của 3 ( Đpcm )
1.A=1+2+2^2+2^3+.....+2^200.Hãy viết A+1 dưới dạng 1 lũy thừa.
2.C=3+3^2+3^3+.....+3^2005.Hãy chứng minh rằng 2B+3 là 1 lũy thừa của 3.
1.
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
2.
B = 3 + 32 + 33 + ... + 32005
3B = 32 + 33 + 34 + ... + 32006
3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3
=> 2B + 3 = 32006
Bài 2: A=1+2+2^2+3^2+....+2^200
Viết A+1 dưới dạng lũy thừa
Bài 3: B=3+3^2+3^3+...+3^2005
Chứng tỏ 2B+3 là lũy thừa của B
Bài 4:Tính: C=1^2+2^2+3^2+...+100^2
Giúp nhanh nha, mình tick cho
Bài 2
A = 1 + 2 + 22 + 23 + ... + 2200
2A = 2 + 22 + 23 + 24 + ... + 2201
2A - A = (2 + 22 + 23 + 24 + ... + 2201) - (1 + 2 + 22 + 23 + ... + 2200)
A = 2201 - 1
=> A + 1 = 2201 - 1 + 1
=> A + 1 = 2201
Bài 3
B = 3 + 32 + 33 + ... + 32005
3B = 32 + 33 + 34 + ... + 32006
3B - B = (32 + 33 + 34 + ... + 32006) - (3 + 32 + 33 + ... + 32005)
2B = 32006 - 3
=> 2B + 3 = 32006 - 3 + 3
=> 2B + 3 = 32006
cho A=1+2+2^2+2^3+...+2^200. Hãy viết A+1 dưới dạng một lũy thừa
B=3+3^2+3^3+...+3^2005.CMR:2B+3 là lũy thừa của 3
Ta có: A = 1 + 2 + 22 + 23 + ....... + 2200
=> 2A = 2 + 22 + 23 + ....... + 2201
=> 2A - A = ( 2 + 22 + 23 + ....... + 2201 ) - ( 1 + 2 + 22 + 23 + ....... + 2200 )
=> A = 2201 - 1
=> A + 1 = 2201
A = 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200
2A = 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201
2A - A = ( 2 + 2 ^ 2 + 2 ^ 3 + 2 ^ 4 + ... + 2 ^ 201 )
- ( 1 + 2 + 2 ^ 2 + 2 ^ 3 + ... + 2 ^ 200 )
A = 2 ^ 201 - 1
=> A + 1 = 2 ^ 201
B = 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005
3B = 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006
3B - B = ( 3 ^ 2 + 3 ^ 3 + 3 ^ 4 + ... + 3 ^ 2006 )
- ( 3 + 3 ^ 2 + 3 ^ 3 + ... + 3 ^ 2005 )
2B = 3 ^ 2006 - 3
=> 2B = 3 ^ 2006
Vậy 2B + 3 là lũy thừa của 3
A=1+1+2+2^2+2^3+...+2^200=2=2+2+2^2+2^3+...+2^200=2^2+2^2+2^3+...+2^200
B chia hết cho 3=>2B chia hết cho 3, 3 chia hết cho 3 mà 2B+3 nên 2B+3 chia hết cho 3