\(\frac{6^6+6^3\cdot3^3+3^6}{-73}-\frac{45^{10}\cdot5^{20}}{75^{15}}\)
Giúp mình với !
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}\)
\(\dfrac{6^6+6^3+3^3+3^6}{-73}\)
\(\dfrac{27^7+3^{15}}{9^9-27}\)
\(\dfrac{8^{20}+4^{20}}{4^{25}+64^5}\)
\(\dfrac{45^{10}\cdot5^{20}}{75^{15}}=\dfrac{\left(3^2\cdot5\right)^{10}\cdot5^{20}}{\left(3\cdot5^2\right)^{15}}=\dfrac{3^{20}\cdot5^{10}\cdot5^{20}}{3^{15}\cdot5^{30}}=3^5=243\\ \dfrac{6^6+6^3+3^3+3^6}{-73}=\dfrac{46656+216+27+729}{-73}=-\dfrac{47628}{73}\\ \dfrac{27^7+3^{15}}{9^9-27}=\dfrac{\left(3^3\right)^7+3^{15}}{\left(3^2\right)^9-3^3}=\dfrac{3^{21}+3^{15}}{3^{18}-3^3}=\dfrac{3^{15}\left(3^6+1\right)}{3^3\left(3^{15}-1\right)}=\dfrac{3^5\cdot730}{3^{15}-1}\\ \dfrac{8^{20}+4^{20}}{4^{25}+64^5}=\dfrac{\left(2^3\right)^{20}+\left(2^2\right)^{20}}{\left(2^2\right)^{25}+\left(2^6\right)^5}=\dfrac{2^{60}+2^{40}}{2^{50}+2^{30}}=\dfrac{2^{40}\left(2^{20}+1\right)}{2^{30}\left(2^{20}+1\right)}=2^{10}=1024\)
Tính GTBT
M=\(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
N= \(\frac{6^6+6^3.3^3+3^6}{73}\)
T=\(\frac{45^{10}.5^{20}}{75^{15}}\)
\(M=\frac{8^{20}+4^{20}}{4^{25}+64^5}=\frac{1^{20}+1^{20}}{1^{25}+8^5}=\frac{1}{32769}\)
\(N=\frac{6^6+6^3\cdot3^3+3^6}{73}=\frac{53217}{73}=729\)
T khó quá!
C=\(\frac{6^6+6^3\cdot3^3+3^6}{-73}\)
Giúp mình với ạ
C=\(\frac{6^6+6^3\cdot3^3+3^6}{-73}\)
C=\(\frac{53217}{-73}\)
C= -729
ta co\(\frac{6^6+6^3.3^3+3^6}{-73}\)=\(\frac{2^6.3^6+2^3.3^3.3^3+3^6}{-73}\)=\(\frac{3^6.\left(2^6+2^3+1\right)}{-73}\)=\(\frac{3^6.73}{-73}\)= \(-\left(3^6\right)\)
1. Tính giá trị biểu thức:
A = \(\frac{6^6+6^3.3^3+3^6}{-73}\)
B = \(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
C = \(\frac{45^{10}.5^{20}}{75^{15}}\)
A=6^6+6^3+3^3+3^6/-73=2^6.3^6+2^3.3^3.3^3+3^6/-73=2^6.3^6+2^3.3^6+3^6/-73=(2^6+2^3+1).3^6/-73=73.3^6/-73=-(3^6)=...
Tính:
A = \(\frac{0,5+0,\left(3\right)-0,1\left(6\right)}{2,5+1,\left(6\right)-0,8\left(3\right)}\)
B = \(\frac{6^6+6^3+3^3+3^6}{-73}\)
C = \(\frac{8^{20}+4^{20}}{4^{25}+64^5}\)
D = \(\frac{45^{10}.5^{20}}{75^{15}}\)
a) A = \(\frac{4}{1\cdot2}+\frac{4}{2\cdot3}+\frac{4}{3\cdot4}+.......+\frac{4}{99\cdot100}\)
b) B = \(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+.......+\frac{1}{45}\)
c) C = \(\frac{6}{1\cdot3}+\frac{6}{3\cdot5}+\frac{6}{5\cdot7}+......+\frac{6}{99\cdot101}\)
e) E = \(\frac{4}{1\cdot3}+\frac{4}{3.5}+\frac{4}{5.7}+......+\frac{4}{205.207}\)
f) F = \(\frac{1}{1.4}+\frac{1}{4.7}+\frac{1}{7.10}\)
- Có 54 số hạng
g) G = \(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...\)
- Tổng này có 20 số hạng
CHÚ Ý : DẤU CHẤM LÀ DẤU NHÂN
c.\(=3\left(\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+..+\frac{2}{99.101}\right)\)
\(=3\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=3\left(1-\frac{1}{101}\right)\)
\(=\frac{300}{101}\)
a.\(=4\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(=4\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(=4\left(1-\frac{1}{100}\right)\)
\(=\frac{99}{25}\)
\(A=\frac{4}{10\cdot2}+\frac{6}{2\cdot20}+\frac{15}{5\cdot20}+\frac{5}{5\cdot40};B=\frac{3}{1\cdot5}+\frac{5}{13\cdot1}+\frac{11}{13\cdot3}+\frac{2}{3\cdot26}\)
So sánh A với B
Tính:
\(\frac{790^{^4}}{79^{^4}}\)
\(\frac{8^{^{14}}}{4^{^{12}}}\)
\(\frac{2^{^{15}}\cdot9^{^4}}{6^{^6}\cdot8^{^3}}\)
\(\frac{45^{^{10}}\cdot5^{^{10}}}{75^{^{10}}}\)
\(\frac{\frac{3}{5}\cdot7^2-3,5^6+\frac{3}{5}\cdot3^9}{\frac{3}{4}\cdot7^2-\frac{3}{4}\cdot5^7+\frac{3}{4}\cdot3^9}\)