Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta có tỉ lệ thức sau :
\(\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}.Chứngminh\frac{2018a-2019b}{2018c+2019d}=\frac{2018c-2019d}{2018a+2019b}\)
Từ \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng t/c DTSBN : \(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}=\frac{2018a+2019b}{2018c+2019d}\)
Cái này đến đây là đề sai nhé ! Đề phải cho là C/m cái (2018a-2019b).(2018c+2019d) = (2018a-2019b)(2018c+2019d) mới đúng
Cho tỉ lệ thức \(\frac{a}{b}=\frac{c}{d}\) . Chứng minh rằng ta co tỉ thức sau :
\(\frac{2018a^{2\:}+2019b^2}{2018b^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\)
Đặt bằng k nhé các bạn , giúp mình nhanh lên ạ
Nhanh lên ạ
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}\)
\(\Rightarrow\frac{2018a^2}{2018c^2}=\frac{2019b^2}{2019d^2}=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018a^2-2019b^2}{2018c^2-2019d^2}\)
\(\Rightarrow\frac{2018a^2+2019b^2}{2018a^2-2019b^2}=\frac{2018c^2+2019d^2}{2018c^2-2019d^2}\left(dpcm\right)\)
cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). chúng minh rằng: \(\left(\frac{a+b}{c+d}\right)^2=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}\)
GIÚP MÌNH VỚI!!!!!!!!!!!!!! LOVE YOU 3000
\(\frac{a}{b}=\frac{c}{d}=t=>\hept{\begin{cases}a=bt\\c=dt\end{cases}}\)
vt\(=\left(\frac{a+b}{c+d}\right)^2=\left(\frac{bt+b}{dt+d}\right)^2=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\left(1\right)\)
vt\(=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}=\frac{2018\left(bt\right)^2+2019b^2}{2018\left(dt\right)^2+2019d^2}=\frac{b^2\left(2018t^2+2019\right)}{d^2\left(2018t^2+2019\right)}=\frac{b^2}{d^2}\left(2\right)\)
từ (1) zà (2)
=>\(\left(\frac{a}{b}+\frac{c}{d}\right)^2=\frac{2018a^2+2019b^2}{2018c^2+2019d^2}\left(dpcm\right)\)
Cho \(\frac{a}{b}=\frac{c}{d}\).CMR \(\frac{2017-2018b}{2018a+2019b}=\frac{2017c-2018d}{2018c+2019d}\)
\(\frac{a}{b}=\frac{c}{d}\Leftrightarrow ad=bc\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2017a-2018b}{2017c-2018d}=\frac{2018a+2019b}{2018c+2019d}\)
<=>\(\left(2017a-2018b\right)\left(2018c+2019d\right)=\left(2018a+2019b\right)\left(2017c-2018d\right)\)
<=>\(\frac{2017a-2018b}{2018a+2019b}=\frac{2017c-2017d}{2018x+2019d}\)(đpcm)
CMR: câu a) 2018a-2019b / 2019c+2020d = 2018c - 2019d / 2019a+2020b
câu b) a^2 + c^2 / b^2 + d^2 = a/bd
Cho \(\frac{a}{b}\)= \(\frac{c}{d}\)CMR \(\frac{2017a+2018}{2018a-2019b}\)= \(\frac{2017c+2018d}{2018c-2019d}\)
ĐK: \(\hept{\begin{cases}b\ne0\\d\ne0\end{cases}}\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=bk\\c=dk\end{cases}}\)
Ta có:
\(\frac{2017a+2018b}{2018a-2019b}=\frac{2017bk+2018b}{2018bk-2019b}=\frac{b\left(2017k+2018\right)}{b\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (1)
\(\frac{2017c+2018d}{2018c-2019d}=\frac{2017dk+2018d}{2018dk-2019d}=\frac{d\left(2017k+2018\right)}{d\left(2018k-2019\right)}=\frac{2017k+2018}{2018k-2019}\) (2)
Từ (1) và (2) \(\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
\(\frac{a}{b}=\frac{c}{d}=>ad=bc=>\frac{a}{c}=\frac{b}{d}\)
\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018b}{2018c}=\frac{2019a}{2019c}=\frac{2019b}{2019c}=\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019c}{2018c-2019d}\)
\(=>2017a+2018b.\left(2018c-2019d\right)=2017c+2018d.\left(2018a-2019b\right)\)
\(\frac{2017a+2018b}{2018b-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
Đề bài: ... cmr \(\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
ta có: \(\frac{a}{b}=\frac{c}{d}\Leftrightarrow\frac{a}{c}=\frac{b}{d}=\frac{2017a}{2017c}=\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018b}{2018d}\) (*)
mà \(\frac{2017a}{2017c}=\frac{2018b}{2018d}=\frac{2017a+2018b}{2017c+2018d}\)
\(\frac{2018a}{2018c}=\frac{2019b}{2019d}=\frac{2018a-2019b}{2018c-2019d}\)
Từ (*) \(\Rightarrow\frac{2017a+2018b}{2017c+2018d}=\frac{2018a-2019b}{2018c-2019d}\Rightarrow\frac{2017a+2018b}{2018a-2019b}=\frac{2017c+2018d}{2018c-2019d}\)
\(Cho:\frac{a}{2b}+\frac{b}{2c}+\frac{c}{2d}+\frac{d}{2a}\)\(\left(a,b,c,d>0\right)\)Tính:\(\frac{2019a-2018b}{c+d}+\frac{2019b-2018c}{a+d}+\frac{2019c-2018d}{a+b}+\frac{2019d-2018a}{c+b}\)
B1: Cho tỷ lệ thức \(\frac{a}{b}\) = \(\frac{c}{d}\). Chứng minh rằng
a) \(\frac{a-b}{b}\)= \(\frac{c-d}{d}\)
b) \(\frac{2016a-2017b}{2018c+2019d}\) = \(\frac{2016c-2017d}{2018a+2019b}\)
c) \(\frac{7a^2+3ab}{11a^2-8b^2}\) = \(\frac{7c^2+3cd}{11c^2-8d^2}\)
B2: Tìm GTNN của:
A = ( x4 + 3)2 B = | 0,5 + x | + (y - 1,3)4 + 20 C = \(\frac{5x-19}{x-4}\)( x thuộc Z)
Bài 1:
a) Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{b}-1=\frac{c}{d}-1\)
\(\Rightarrow\frac{a}{b}-\frac{b}{b}=\frac{c}{d}-\frac{d}{d}.\)
\(\Rightarrow\frac{a-b}{b}=\frac{c-d}{d}\left(đpcm\right).\)
Mình làm được thế thôi nhé.
Chúc bạn học tốt!
Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\) Chứng minh:
a) \(\frac{a+2019b}{a-2019b}=\frac{c+2019d}{c-2019d}\)
b)\(\frac{2019\left(a+c\right)}{2019a}=\frac{b+d}{b}\)