Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Bảo Anh
Xem chi tiết
Nguyễn Đức Phát
5 tháng 5 2020 lúc 9:17

??????

Khách vãng lai đã xóa
Phạm Anh Tuấn
Xem chi tiết
Nguyễn Thị Oanh
Xem chi tiết
Lê Nguyên Bách
29 tháng 3 2015 lúc 8:53

Do các ẩn x, y, z có vai trò đẳng lập, nên có thể giả sử 1\(\le\)x\(\le\)y\(\le\)z

=> xyz = 1 + x + y + z\(\le\)3z + 1

Lê Nguyên Bách
29 tháng 3 2015 lúc 9:02

Mình vội quá!!!

Viết tiếp nè,

xyz = 1 + x + y + z \(\le\)3z + 1\(\le\)4z           (Do 1\(\le\)z)

Chia hai vế cho z được xy\(\le\)4 => xy \(\in\){ 1; 2; 3; 4}

Với xy = 1 thì x = y = 1 => z = 3 + z (vô lí)

Với xy = 2 thì x = 1; y = 2 => z = 4

Với xy = 3 thì x = 1; y = 3 => z = 2,5 (loại)

Với xy = 4 thì x = 1; y = 4 => z = 2

Vậy (x; y; z) = (1; 2; 4) và các hoán vị của chúng 

Lê Nguyên Bách
29 tháng 3 2015 lúc 9:05

Sửa một chút, phần trên cùng phải là 1\(\le\)x\(\le\)y\(\le\)z, không phải là 1xyz

Dòng dưới của phần trên cùng bỏ vì nó ở dưới rồi. mong các bạn thông cảm vì mình vội quá

Nguyễn Thị Thúy Hường
Xem chi tiết
duc cuong
Xem chi tiết
Hoàng Nhẫn
Xem chi tiết
Quang Vũ Văn Quang
5 tháng 12 2022 lúc 20:44

Ta thấy [TEX]y \geq 1[/TEX].
+ Nếu [TEX]y=1[/TEX] thì ta có [TEX]3^x=2^z-1[/TEX].
Xét tính chia hết cho 3 dễ thấy [TEX]z \vdots 2[/TEX]. Đặt [TEX]z=2k (k \in \mathbb{N}^*)[/TEX]
Ta có: [TEX]3^x=2^{2k}-1=(2^k-1)(2^k+1)[/TEX]
Đặt [TEX]2^k-1=3^m, 2^k+1=3^n (m,n \in \mathbb{N}^*; m+n=z) [/TEX]
Ta có: [TEX]3^n-3^m=2 \Rightarrow n=1, m=1 \Rightarrow z=2[/TEX]
[TEX]\Rightarrow z=1[/TEX]. Từ đó ta có bộ [TEX](x,y,z)=(1,1,2)[/TEX]
+ Nếu [TEX]y \geq 2[/TEX] thì ta có [TEX]2^z-2^y=3^x-1 > 0 \Rightarrow z >y[/TEX]
Lại có: [TEX]z>y \geq 2 \Rightarrow 3^x-1 \vdots 4 \Rightarrow x \vdots 2[/TEX]
Khi đó nếu [TEX]y \geq 4[/TEX] thì [TEX]3^x-1 \vdots 16 \Rightarrow x \vdots 4[/TEX]
[TEX]x=4q\Rightarrow 2^z-2^y=81^q-1\equiv 0(\text{mod 5})\Rightarrow 2^z-2^y\vdots 5\Rightarrow 2^y(2^{z-y}-1)\vdots 5[/TEX]
Từ đó [TEX]2^{z-y}-1 \vdots 5 \Rightarrow z-y=4k+2 \Rightarrow z-y \vdots 2 \Rightarrow 2^{z-y}-1 \vdots 3[/TEX]
[TEX]\Rightarrow 3^x-1 \vdots 3[/TEX](mâu thuẫn)
Suy ra [TEX]2 \leq y \leq 3[/TEX].
Nếu [TEX]y=2[/TEX] thì [TEX]3^x+3 =2^z \vdots 3[/TEX](mâu thuẫn)
Nếu [TEX]y=3[/TEX] thì [TEX]3^x+7=2^z[/TEX]. Xét đồng dư với 3 nên [TEX]z \vdots 2[/TEX].
Đặt [TEX]x=2m,z=2n \Rightarrow 2^{2n}-3^{2m}=7 \Rightarrow (2^n-3^m)(2^n+3^m)=7[/TEX]
[TEX]\Rightarrow 2^n-3^m=1,2^n+3^m=7 \Rightarrow n=2,m=1 \Rightarrow x=2,z=4[/TEX]
Vậy [TEX](x,y,z)=(1,1,2)[/TEX] hoặc [TEX](x,y,z)=(2,3,4)[/TEX]

ducquang050607
Xem chi tiết
Nguyễn thành Đạt
Xem chi tiết
khoa
Xem chi tiết
Trần Minh Hoàng
12 tháng 3 2021 lúc 21:05

\(\dfrac{x}{x^2+yz}+\dfrac{y}{y^2+zx}+\dfrac{z}{z^2+xy}\le\dfrac{x}{2\sqrt{x^2yz}}+\dfrac{y}{2\sqrt{y^2zx}}+\dfrac{z}{2\sqrt{z^2xy}}=\dfrac{1}{2}\left(\dfrac{1}{\sqrt{yz}}+\dfrac{1}{\sqrt{zx}}+\dfrac{1}{\sqrt{xy}}\right)\le\dfrac{1}{2}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=\dfrac{3}{2}\).

Đẳng thức xảy ra khi x = y = z = 1.