help !!!!!!!
Tìm \(a,b\in N^{\circledast}\)sao cho \(\frac{11}{7}< \frac{a}{b}< \frac{23}{29}\) và 8b-9a=31
Cảm ơn trước nha !!!
Tìm a,b \(\in N\)sao cho\(\frac{11}{7}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31
Ta có:
\(b=\frac{31+9a}{8}\) thê vô cái còn lại được
\(\frac{11}{7}< \frac{a}{\frac{31+9a}{8}}< \frac{23}{29}\)
\(\Leftrightarrow\frac{11}{7}< \frac{8a}{31+9a}< \frac{23}{29}\)
\(\Leftrightarrow\hept{\begin{cases}56a>341+99a\\232a< 713+207a\end{cases}}\)
\(\Leftrightarrow28< a< -7\)
Không tồn tại a,b tự nhiên thỏa bài toán
tớ xin lỗi đề là 11\(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)
Tìm a,b thuộc N sao cho \(\frac{11}{7}< \frac{a}{b}< \frac{23}{29}\) và 8b-9a=31.
tìm a, b \(\in\)N sao cho \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31
tìm ab\(\in N\) sao cho \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31
Câu 1: Tìm số tự nhiên a,b thoả mãn điều kiện \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b-9a=31, help!!!!
Gọi số hàng chục là a
Số hàng đơn vị là b
Số cần tìm là 10.a+b
tổng các chữ số là a+b
theo giả thiêt 10a+b chia a+b được 2 dư 7
10a+b là số bị chia
a+b là số chia
Vậy 10a+b = 2(a+b) +7
Kèm theo điều kiện
a là số tự nhiên có 1 chữ sô từ 1 đến 9 (1)
b là số tự nhiên có 1 chữ sô từ 0 đến 9 (2)
a+b >7 điều kiện số chia lớn hơn số dư (3)
Từ 10a+b = 2(a+b) +7
=> 10a+b = 2a+2b +7
=> 8a = 7+b
=> a = (7+b) : 8
Vì a là số tự nhiên nên 7+b phải chia hết cho 8
7+b có thể nhận các giá trị 8 , 16, 24, 32 ,40 v..v
Nếu
----7+b =8
=> b=1
a=1 Loại vì a+b=2 <7 Vi phạm điều (3)
----7+b = 16
==> b= 9
a= 2 Thỏa mãn toàn bộ điều kiện .Số cần tìm là 10x2+9 =29
----7+b = 24
=> b= 17
a= 3 Loại vì b có 2 chữ số theo điều kiện (2 )
Không xét b+7 = 32, 40,48 v..v nữa vì b+7 càng to thì b càng có 2 chữ số hoặc hơn
ĐS: 29
add và k mk nha bn
Tìm tất cả các số tự nhiên a và b sao cho:
\(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)và 8b - 9a =31
Tìm a,b thuộc N để :
\(\frac{11}{17}<\frac{a}{b}<\frac{23}{29}\)và 8b - 9a = 31.
tìm các số tự nhiên a ,b thỏa mãn \(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\) và 8b - 9a = 31
Tìm các số tự nhiên a , b thỏa mãn
\(\frac{11}{17}< \frac{a}{b}< \frac{23}{29}\)
và 8b - 9a = 31
Trả lời
Cậu xem tại link:
Câu hỏi của nguyễn nam dũng - Toán lớp 6 - Học toán với OnlineMath
~Hok tốt~
bạn phải nói cụ thể link ra nha
29 nha
hok tốt