Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 9 2021 lúc 15:59

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{5}{3}\\x_1x_2=-2\end{matrix}\right.\)

Ta có: \(\left\{{}\begin{matrix}y_1+y_2=2x_1-x_2+2x_2-x_1\\y_1y_2=\left(2x_1-x_2\right)\left(2x_2-x_1\right)\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=x_1+x_2\\y_1y_2=-2x_1^2-2x_2^2+5x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2\left(x_1+x_2\right)^2+9x_1x_2\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y_1+y_2=-\dfrac{5}{3}\\y_1y_2=-2.\left(-\dfrac{5}{3}\right)^2+9.\left(-2\right)=-\dfrac{212}{9}\end{matrix}\right.\)

\(\Rightarrow y_1;y_2\) là nghiệm của:

\(y^2+\dfrac{5}{3}y-\dfrac{212}{9}=0\Leftrightarrow9y^2+10y-212=0\)

29 Phúc Hưng
Xem chi tiết
Nguyễn Minh Quang
20 tháng 3 2022 lúc 12:52

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

Khách vãng lai đã xóa
Nguyễn My
Xem chi tiết
Le Dinh Quan
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
19 tháng 9 2018 lúc 2:53

Đặt m = y2 .Điều kiện m  ≥  0

Ta có:  y 4  – 1,16 y 2 + 0,16 =0 ⇔ m 2  -1,16m + 0,16 =0

Phương trình m 2  -1,16m + 0,16 = 0 có hệ số a = 1, b = -1,16, c = 0,16 nên có dạng a + b + c = 0

suy ra:  m 1  = 1 ,  m 2 = 0,16

Ta có:  y 2  =1 ⇒ y = ± 1

y 2  =0,16 ⇒ y =  ±  0,4

Vậy phương trình đã cho có 4 nghiệm :  y 1 =1 ;  y 2  =-1 ;  y 3 =0,4 ;  y 4  =-0,4

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 1 2019 lúc 13:25

Phương trình bậc hai y2 – 8y + 16 = 0

Có a = 1; b = -8; c = 16; Δ = b2 – 4ac = (-8)2 – 4.1.16 = 0.

Áp dụng công thức nghiệm ta có phương trình có nghiệm kép :

Giải bài 16 trang 45 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy phương trình có nghiệm kép y = 4.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 1 2017 lúc 9:29

ĐK:  y ≥ 1 3 x + 2 y ≥ 1 ⇔ x ≥ 1 − 2 y y ≥ 1 3

Xét  3 y − 1 + x + 2 y − 1 = 0 ⇔ x = y = 1 3

Thay vào (2) không thỏa mãn

Xét  3 y − 1 + x + 2 y − 1 ≠ 0 ⇔ x ≠ 1 3 y ≠ 1 3

(1) ⇔ y ( x   –   y ) = y − x 3 y − 1 + x + 2 y − 1

Với x = y, thay vào (2) ta được:

x 4 – 4 x 3 + 7 x 2 − 6 x + 2 = 0 ⇔ ( x – 1 ) 2   ( x 2 – 2 x + 2 ) = 0 ⇔ x   =   1

Khi đó: y = 1 (TM). Vậy nghiệm của hệ là (1; 1)

Nên x. y = 1

Đáp án:B

chu quang dương
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
13 tháng 8 2019 lúc 14:35

Đáp án: D

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 9 2017 lúc 9:43

(Các phần giải thích học sinh không phải trình bày).

Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Chia hai vế của pt 2 cho √2 để hệ số của x bằng nhau)

Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Trừ từng vế của hai phương trình)

Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất

 Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Chia hai vế pt 2 cho √2 để hệ số của y đối nhau)

Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên cộng từng vế của 2 pt)

Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 21 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.