Tính
1/(x-y)(y-z)+1/(y-z)(z-x)+1/(z-x)(x-y)
Cho 1/x+y +1/y+z +1/z+x=0 Tính P=(y+z)(z+x)/(x+y)^2 + (x+y)(z+x)/(y+z)^2+ (y+z)(x+y)/(z+x)^2
Đặt \(\dfrac{1}{a}=\dfrac{1}{x+y},\dfrac{1}{b}=\dfrac{1}{y+z},\dfrac{1}{c}=\dfrac{1}{z+x}\)
Đề trở thành: \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\), tính \(P=\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}\)
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\) Tương đương \(ab+bc=-ac\)
\(P=\dfrac{b^3c^3+a^3c^3+a^3b^3}{a^2b^2c^2}=\dfrac{\left(ab+bc\right)\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}=\dfrac{-ac\left(a^2b^2-ab^2c+b^2c^2\right)+a^3c^3}{a^2b^2c^2}\)
\(=\dfrac{a^2c^2-a^2b^2+ab^2c-b^2c^2}{ab^2c}=\dfrac{ac}{b^2}-\dfrac{a}{c}+1-\dfrac{c}{a}\)\(=ac\left(\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\right)-\dfrac{a}{c}+1-\dfrac{c}{a}\) (do \(\dfrac{1}{b}=-\dfrac{1}{a}-\dfrac{1}{c}\) tương đương \(\dfrac{1}{b^2}=\dfrac{1}{a^2}+\dfrac{2}{ac}+\dfrac{1}{c^2}\))
\(=3\)
Vậy P=3
y+z-x/x=z+x-y/y=x+y-z/z
tính B=(1+x/y).(1+y/z).(1+z/y)
Giả sử x+y+z=2017 và 1/x+y +1/y+z +1/x+z= 1/672
Tính tổng C = x/y+z + y/z+x + z/x+y
\(\left(x+y+z\right).\left(\dfrac{1}{x+y}+\dfrac{1}{y+z}+\dfrac{1}{x+z}\right)=\dfrac{2017}{672}\)
\(\Rightarrow\left(\dfrac{x+y+z}{x+y}+\dfrac{x+y+z}{y+z}+\dfrac{x+y+z}{x+z}\right)=\dfrac{2017}{672}\)
\(\Rightarrow1+\dfrac{z}{x+y}+1+\dfrac{x}{y+z}+1+\dfrac{y}{x+z}=\dfrac{2017}{672}\)
\(\Rightarrow3+\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{2017}{672}\)
\(\Rightarrow\dfrac{x}{y+z}+\dfrac{y}{x+z}+\dfrac{z}{x+y}=\dfrac{2017}{672}-3=\dfrac{2017}{672}-\dfrac{2016}{672}=\dfrac{1}{672}\)
\(\Rightarrow C=\dfrac{1}{672}\)
Cho x+y/z=y+z/x=z+x/y;x,y,z khác 0.Tính P=(1+x/y).(1+y/z).(1+z/x)
cho x , y, z ≠0 thỏa mãn \(\dfrac{x+y-z}{z}\)=\(\dfrac{y+z-x}{x}\)=\(\dfrac{z+x-y}{y}\). tính P=(1+\(\dfrac{x}{y}\)).(1 +\(\dfrac{y}{z}\)).(1+\(\dfrac{z}{x}\))
Lời giải:
Nếu $x+y+z=0$ thì:
$\frac{x+y-z}{z}=\frac{-z-z}{z}=-2$
$\frac{y+z-x}{x}=\frac{-x-x}{x}=-2$
$\frac{z+x-y}{y}=\frac{-y-y}{y}=-2$
(thỏa mãn đkđb)
Khi đó:
$P=(1+\frac{x}{y})(1+\frac{y}{z})(1+\frac{z}{x})=\frac{(x+y)(y+z)(z+x)}{xyz}$
$=\frac{(-z)(-x)(-y)}{xyz}=\frac{-xyz}{xyz}=-1$
Nếu $x+y+z\neq 0$
Áp dụng TCDTSBN:
$\frac{x+y-z}{z}=\frac{y+z-x}{x}=\frac{z+x-y}{y}=\frac{x+y-z+y+z-x+z+x-y}{z+x+y}=\frac{x+y+z}{x+y+z}=1$
$\Rightarrow x+y=2z; y+z=2x, z+x=2y$. Khi đó:
$P=\frac{(x+y)(y+z)(z+x)}{xyz}=\frac{2z.2x.2y}{xyz}=8$
Cho x+y+z= 2016 và 1/(x+y)+1/(y+z)+1/(x+z)=1/8
Tính P= x/(y+z)+y/(x+z)+z/(x+y)
Cho x+y+z= 2016 và 1/(x+y)+1/(y+z)+1/(x+z)=1/8
tính P=x/(y+z)+y/(x+z)+z/(x+y)
cho x+y+z=2017 và 1/x+y + 1/x+z + 1/y+z = 2017
Tính A = x/y+z + y/x+z + z/x+y
Xét : 2017.2017 = (x+y+z).(1/x+y + 1/x+z + 1/y+z)
= x/y+z + y/x+z + z/x+y + 1 + 1 + 1
= x/y+z + y/x+z + z/x+y + 3
=> A = x/y+z + y/x+z + z/x+y = 2017^2 - 3 = 4068286
Tk mk nha
Ta có :(x+y+z)(1/x+y + 1/y+z + 1/x+z) =20172
=>x/x+y +y/x+y +z/x+y + x/y+z + y/y+z + z/y+z +x/x+z + y/x+z + z/x+z=20172
=>(x/x+y + y/x+y)+(y/y+z + z/y+z)+(x/x+z + z/x+z)+(x/y+z + y/x+z + z/x+y) =4068289
=>1+1+1+A=4068289
=>A=4068286
Cho x/y+z=y/z+x=z/x+y
Tính (1+x/y)(1+y/z)(1+z/x)
cho 3 số x,y,z khác 0 thỏa mãn y+z-x/3=z+x-y/y=x+y-z/z
tính giá trị biểu thức P =(1+x/y)(1+y/z)(1+z/x)