cho tam giác đều abc.Lấy điểm p bất kì trong tam giác.Chứng minh rằng pa pb và pc là độ dài 3 cạnh tam giáccho tam giác đều abc.Lấy điểm p bất kì trong tam giác.Chứng minh rằng pa pb và pc là độ dài 3 cạnh tam giác
Cho Tam giác ABC và điểm P nằm trong tam giác.Chứng minh rằng:
\(\frac{AB+BC+CA}{2}\)<PA+PB+PC<AB+BC+CA
CHo tam giác ABC , điểm P bất kì nằm trong tam giác . Kẻ PA' , PB' , PC' vuông góc BC , CA , AB
Xác định vị trí điểm P sao cho BC/PA' + CA/PB' + AB/PC' min
Có : \(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}=\frac{BC^2}{PA'.BC}+\frac{CA^2}{PB'.CA}+\frac{AB^2}{PC'.AB}\)
\(=\frac{BC^2}{2S_{BPC}}+\frac{CA^2}{2S_{CPA}}+\frac{AB^2}{2S_{ABP}}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\)được
\(\frac{BC}{PA'}+\frac{CA}{PB'}+\frac{AB}{PC'}\ge\frac{\left(AB+BC+CA\right)^2}{2S_{ABC}}=\frac{P_{ABC}^2}{2S_{ABC}}=const\:\)
Dấu "=" khi 3 cái phân số chứa mẫu là S kia bằng nhau <=> PA' = PB' = PC'
<=> P là tâm đường tròn nội tiếp tam giác ABC
Cho tam giác đều ABC và điểm P nằm trong tam giác, sao cho PC = 3, PA = 4 và PB = 5. Tìm chu vi của tam giác ABC ?
Cho một tam giác đều ABC nội tiếp trong đường tròn (O) và một điểm P trên cung nhỏ BC.Nối PA rồi lấy trên PA một đoạn PB=PM.
a)Chứng minh :Tam giác PBC=Tam giác MBA.
b)Đoạn thẳng PA cắt BC tại Q. Chứng minh rằng 1/PQ=1/PB+1/PC.
c)Khi P chạy trên cung nhỏ BC thì trung điểm I của PA di chuyển trên đường nào?
Bn xem thử có câu nào giống k? Bấm câu hỏi tương tự
Xin đừng ném đá
Mk có ý tốt
K tìm thấy thì mk xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
cho tam giác đều ABC. P là điểm bất kì trong tam giác. CMR: PA,PB,PC là độ dài ba cạnh của 1 tam giác
Cho P là điểm nằm trong tam giác đều ABC sao co PA = 4, PB 4 căn 3, PC = 8. tính diện tích tam giác ABC
Cho tam giác ABC, AB = AC và P là điểm bất ký nằm trong hoặc nằm trên các cạnh của tam giác ABC.chứng minh rằng
\(PA^2+PB.PC\le PB^2\)
Hãy chứng minh rằng: Với một tam giác đều cố định và một điểm bất kì nằm trong tam giác đều đó thì tổng các khoảng cách từ điểm đó đến 3 cạnh của tam giác đều là không đổi.
Xét tam giác ABC, M là điểm trong tam giác, MD,ME,MF lần lượt là hình chiếu của M lên AB,AC,BC
Kẻ đường cao AH const
Đặt \(AB=AC=BC=a\)
\(S_{ABC}=S_{AMB}+S_{AMC}+S_{BMC}\)
\(=\frac{1}{2}\left(DM.AB+ME.AC+MF.BC\right)\)
\(=\frac{1}{2}a\left(DM+ME+MF\right)\)
\(=\frac{1}{2}a.AH\)
\(=DM+ME+MF=AH\left(đpcm\right)\)
Cho 6 điểm nằm trong một mặt phẳng sao cho 3 điểm bất kì tạo thành một tam giác có độ dài các cạnh khác nhau.Chứng minh rằng một cạnh lớn nhất của tam giác này vừa là cạnh lớn nhất của tam giác khác,