xác địng m để đường thẳng y = (2 - m)x + 3m - m^2 tạo với trục hoành một góc a = 60 độ
xác định m để đường thẳng y=(2-m)x + 3m-m^2 tạo với trục hoành 1 góc 60 độ
xác định m để dường thẳng \(y=\left(2-m\right)x+3m-m^2\)tạo với trục hoành một góc alpha=60 độ
1) Cho 2 hàm số y=-x+1 và y=3x + 2 .
a) vẽ đồ thị 2 hàm số trên cùng 1 hệ trục tọa độ .
b) Tính góc tạo bởi 2 đường thẳng đó trên trục hoành
2) Cho đường thẳng (d) có phương trình y = m+1.x-3m+6.Tìm m,n để: .
â) (d) // với đường thẳng -2x+5 và đi qua điểm có tọa độ (2 ; -1).
b) (d) tạo bởi trục hoành 1 góc tù .
c) (d) có hệ số góc bằng -2 và trung độ góc bằng 1.
3) Cho hàm số y=(m+3).+2m+1 (d1) và y=2m.x-3m-4 (d2)
â) Tìm m để d1 cắt d2, d1 song song với d2, d1 trùng d2.
b) d1 và d2 cắt nhau tại 1 điểm trên trục trung .
c) d1 và d2 cắt nhau tại 1 điểm trên trục hoành .
đ) Tìm góc tạo bởi 2 đường thẳng với trục Ox khi m =-1
Bai1 . Xác định m để đương thẳng y=(m-1)x+2 cắt đường thẳng y=3x+1
Bài 2 .Để đường thẳng y=(m-1)x+2 tạo với trục Ox một góc 60 độ thì m phải có giá trị là bao nhiêu
ta có : y = ( m -1 ) x + 2 cắt y = 3x + 1
\(\Rightarrow m-1\ne3\)
\(\Rightarrow m\ne4\)
Bài 1 : Cho hàm số y = (m + 5)x+ 2m – 10
Với giá trị nào của m thì y là hàm số bậc nhất
Với giá trị nào của m thì hàm số đồng biến.
Tìm m để đồ thị hàm số điqua điểm A(2; 3)
Tìm m để đồ thị cắt trục tung tại điểm có tung độ bằng 9.
Tìm m để đồ thị đi qua điểm 10 trên trục hoành .
Tìm m để đồ thị hàm số song song với đồ thị hàm số y = 2x -1
Chứng minh đồ thị hàm số luôn đi qua 1 điểm cố định với mọi m.
Tìm m để khoảng cách từ O tới đồ thị hàm số là lớn nhất
Bài 2: Cho đường thẳng y=2mx +3-m-x (d) . Xác định m để:
Đường thẳng d qua gốc toạ độ
Đường thẳng d song song với đường thẳng 2y- x =5
Đường thẳng d tạo với Ox một góc nhọn
Đường thẳng d tạo với Ox một góc tù
Đường thẳng d cắt Ox tại điểm có hoành độ 2
Đường thẳng d cắt đồ thị Hs y= 2x – 3 tại một điểm có hoành độ là 2
Đường thẳng d cắt đồ thị Hs y= -x +7 tại một điểm có tung độ y = 4
Đường thẳng d đi qua giao điểm của hai đường thảng 2x -3y=-8 và y= -x+1
Bài 3: Cho hàm số y=( 2m-3).x+m-5
Vẽ đồ thị với m=6
Chứng minh họ đường thẳng luôn đi qua điểm cố định khi m thay đổi
Tìm m để đồ thị hàm số tạo với 2 trục toạ độ một tam giác vuông cân
Tìm m để đồ thị hàm số tạo với trục hoành một góc 45o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 135o
Tìm m để đồ thị hàm số tạo với trục hoành một góc 30o , 60o
Tìm m để đồ thị hàm số cắt đường thẳng y = 3x-4 tại một điểm trên 0y
Tìm m để đồ thị hàm số cắt đường thẳng y = -x-3 tại một điểm trên 0x
Bài4 (Đề thi vào lớp 10 tỉnh Hải Dương năm 2000,2001) Cho hàm số y = (m -2)x + m + 3
a)Tìm điều kiện của m để hàm số luôn luôn nghịch biến .
b)Tìm điều kiện của m để đồ thị cắt trục hoành tại điểm có hoành độ bằng 3.
c)Tìm m để đồ thị hàm số y = -x + 2, y = 2x –1 và y = (m - 2)x + m + 3 đồng quy.
d)Tìm m để đồ thị hàm số tạo với trục
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
Giả sử (d) luôn đi qua điểm cố định M(x0; y0)
Ta có: \(y_0=\left(m+5\right)x_0+2m-10\)
<=> \(mx_0+5x_0+2m-10-y_0=0\)
<=> \(m\left(x_o+2\right)+5x_0-y_0-10=0\)
Để M cố định thì: \(\hept{\begin{cases}x_0+2=0\\5x_0-y_0-10=0\end{cases}}\) <=> \(\hept{\begin{cases}x_0=-2\\y_0=-20\end{cases}}\)
Vậy...
Cho đường thẳng (d) xác định bởi hàm số \(y=\left(1-4m\right)x+m-2\) .
a, Với giá trị nào của m thì đường thẳng (d) đi qua gốc tọa độ? Song song với trục Ox.
b, Tìm các giá trị của m để đường thẳng (d) cắt trục hoành tại điểm có hoành độ âm.
c, Tìm các giá trị của m để đường thẳng (d) tạo với trục Ox một góc nhọn? Góc tù
d, Tìm các giá trị của m để đường thẳng (d) vuông góc với đường thẳng (d') y = 2x + 3. Tính diện tích của hình giới hạn bởi các đường thẳng (d), (d') và trục tung.
tìm m để đường thẳng y=(2-2m)x-5 tạo với trục hoành một góc nhọn và song song với đường thẳng y=(m^2-1)x+3
Bài toán thỏa mãn khi:
\(\left\{{}\begin{matrix}2-2m>0\\2-2m=m^2-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m^2+2m-3=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 1\\\left\{{}\begin{matrix}m=1\\m=-3\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow m=-3\)
cho h/số y=(3m+2)x+2. a) tìm tọa độ giao điểm của đường thẳng với trục Oy. b) Tìm m để đường thẳng trên cắt trục hoành tại điểm có hoành độ bằng 2.
a) A(0,2)
b) x=2=> y=0=>( 3m+2).2+2=0=>6m+6=0=> m=-1
cho h/số y=(3m+2)x+2. a) tìm tọa độ giao điểm của đường thẳng với trục Oy. b) Tìm m để đường thẳng trên cắt trục hoành tại điểm có hoành độ bằng 2.
Ta thấy b = 2
=> tung độ gốc của h/s y = ..... là 2 hay tọa độ giao điểm của đt vs trục oy là 2
b ) Đt thẳng cắt tại điểm có hoành độ = 2
=> x = 2 ; y =0
Thế vào h/s y = ..... ta được :
0 = ( 3m + 2 ) . 2 + 2
=> m = -1
Vậy để đt cắt trục hoành tại điểm có hoành độ = 2 thì m = -1