CMR:Tích của hai số tự nhiên liên tiếp chia hết cho 8
CMR:Tích hai số tự nhiên liên tiếp không chia hết cho 4
hai số tự nhiên không chia hết cho 4 là : 9 và 10
CMR:Tích 4 số tự nhiên chẵn liên tiếp chia hết cho 384
CMR:tích của hai số nguyên liên tiếp luôn chia hết cho 2
trong 2 số nguyên liên tiếp chắc chắn có 1 số chia hết cho 2
=> tích của chúng chia hết cho 2
=> đpcm
Gọi 2 số nguyên liên tiếp là: a và a+1
Tích của chúng là: A = a(a+1)
Nếu: a = 2k thì A chia hết cho 2 Nếu: a = 2k+1 thì: a+1 = 2k+2 chia hết cho 2 => A chia hết cho 2=> đpcm
Giả sử : A = n(n+1) , có 2 trường hợp :
+)Nếu n chẵn thì n chia hết cho 2 do đó A chia hết cho 2 .
+)Nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 và A chia hết cho 2 .
Chứng tỏ rằng:
a trong 2 số tự nhiên liên tiếp có một số chia hết cho 2
b Trong 3 số tự nhiên liên tiếp có một số chia hết cho 3
c Tổng của 3 số tự nhiên liên tiếp là một số chia hết cho 3
d Tổng của 4 số tự nhiên liên tiếp là một số không chia hết cho 4
e Tích của hai số chẵn liên tiếp chia hết cho 8
a) Ta có : 2 số tự nhiên liên tiếp là : 2k và 2k + 1 trong đó 2k chia hết cho 2
b) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2 trong đó 3k chia hết cho 3
c) Ta có : 3 số tự nhiên liên tiếp là 3k ; 3k + 1 và 3k + 2
3k + 3k + 1 + 3k + 2 = ( 3k + 3k + 3k ) + ( 2 + 1 ) = 9k + 3
\(\hept{\begin{cases}9k⋮3\\3⋮3\end{cases}\Rightarrow\left(9k+3\right)⋮3}\)
d) Tương tự
Có ai muốn làm bạn tình cùng tôi ko
chứng tỏ rằng :
a) tổng của ba số tự nhiên liên tiếp là một số chia hết cho 3
b) tổng của bốn số tự nhiên liên tiếp là một số không chia hết cho 4
c) tích của hai số tự nhiên liên tiếp thì chia hết cho 2
d) tích của ba số tự nhiên liên tiếp luôn chia hết cho 3
cứu mình
a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2
Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)
b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3
Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)
c, Hai số tự nhiên liên tiếp là k và k+1
Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2
Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2
(ĐPCM)
d, Ba số tự nhiên liên tiếp là m;m+1 và m+2
Tích chúng: m(m+1)(m+2)
+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3
+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3
=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)
a: Gọi ba số liên tiếp là a;a+1;a+2
a+a+1+a+2=3a+3=3(a+1) chia hết cho 3
b: Gọi 4 số liên tiếp là a;a+1;a+2;a+3
a+a+1+a+2+a+3
=4a+6
=4a+4+2
=4(a+1)+2 ko chia hết cho 4
c: Hai số liên tiếp thì luôn có 1 số chẵn, 1 số lẻ
=>Hai số liên tiếp khi nhân với nhau sẽ chia hết cho 2
d: Ba số liên tiếp thì chắc chắn sẽ có 1 số chia hết cho 3
=>Ba số liên tiếp khi nhân với nhau sẽ chia hết cho 3
Chứng tỏ rằng:
A. Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2
B. Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
C. Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
D. Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
E. Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a,
Gọi hai số tự nhiên liên tiếp là a và a + 1
Nếu a chia hết cho 2 thì bài toán được chứng minh.
Nếu a không chia hết cho 2 thì a = 2k + 1 (k∈N)
Suy ra: a + 1 = 2k + 1 + 1 = 2k + 2
Ta có: 2k ⋮ 2; 2 ⋮ 2
Suy ra: (2k + 2) ⋮ 2 hay (a + 1) ⋮ 2
Vậy trong hai số tự nhiên liên tiếp, có một số chia hết cho 2
Mik chỉ làm được câu a thôi nhưng vẫn mong bạn ủng hộ ^-^
Chứng tỏ rằng:
a) Trong hai số tự nhiên liên tiếp có 1 số chia hết cho 2.
b) Trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3.
c) Tổng của hai số tự nhiên liên tiếp thì không chia hết cho 2
d) Tổng của ba số tự nhiên liên tiếp là 1 số chia hết cho 3
e) Tổng của bốn số tự nhiên liên tiếp thì không chia hết cho 4
a) hai số liên tiếp thì sẽ có 1 số chẵn và 1 số lẻ , số chẵn là số chia hết cho 2 nên trong hai số tự nhiên liên tiếp sẽ có 1 số chia hết cho 2
a) Vì có 1 số chẵn và 1 số lẻ trong 2 số tự nhiên liên tiếp nên chia hết cho 2
b) Trong 3 số tự nhiên liên tiếp thì có số cộng các chữ số của số đó chia hết cho3
c) Tổng 2 số tự nhiên liên tiếp là chẵn + lẻ = lẻ nên ko chia hết cho 2
d) 3 số tự nhiên liên tiếp thì có 1 số chia 3 dư 1 , 1 số chia 3 dư 2 , 1 số chia hết cho 3 nên lấy số dư là 1+2=3 chia hết cho 3 nên tổng 3 số tự nhiên liên tiếp chia hết cho 3
a)vì trong hai só tự nhiên liên tiếp có một số chẵn và số lẻ nên có 1 số chia hết cho 2.
b)TH1: Nếu số đầu tiên có dạng 3k (k thuộc N) thì bài toán giải quyết xong 3k chia hết cho 3
TH2: Nếu số đầu tiên có dạng 3k +1
Thì số đó là 3k+1,3k+2,3k+3
Mà 3k+3 chia hết cho 3 nên bài toán giải quyết xong
TH3: Nếu số đầu tiên có dạng 3k +2
Thì số đó là 3k+2,3k+3,3k+4
Mà 3k+3 chia hết cho 3 nên bài toán giải quyết xong
c)Gọi 2 số tự nhiên liên tiếp đó là a,a+1
Ta có :
a+a+1=2a+1 không chia hết cho 2
Vậy tổng 2 số tự nhiên liên tiếp không chia hết cho 2
d)Gọi 3 số tự nhiên liên tiếp đó là b,b+1,b+2
Ta có :
b+b+1+b+2= 3b+3 chia hết cho 3
Vậy tổng 3 số tự nhiên liên tiếp chia hết cho 3
e)Gọi 4 số tự nhiên liên tiếp đó là c,c+1,c+2,c+3
Ta có :
c+c+1+c+2+c+3=4c+6 không chia hết cho 4
Vậy tổng 4 số tự nhiên liên tiếp không chia hết cho 4
CMR
a, Tích của hai số tự nhiên liên tiếp chia hết cho 2
b,Tích của 3 số tự nhiên liên tiêp chia hết cho 6
c,Tích của 4 số tự nhiên liên tiếp chia hết cho 24
d, Tích của 5 số tự nhiên liên tiếp chia hết cho 120
a) giả sử: A = n(n+1) , có 2 trường hợp:
nếu n chẵn thì n chia hết cho 2 do đó A chia hết chia 2
nếu n lẻ thì n+1 chẵn do đó n+1 chia hết cho 2 nên A chia hết cho 2
Đặt tích 3 số tự nhiên liên tiếp là T = a * (a + 1) * (a + 2)
-Chứng minh T chia hết cho 2: Chỉ có 2 trường hợp
+Nếu a chia hết cho 2 (a chẵn) => T chia hết cho 2
+Nếu a chia 2 dư 1 (a lẻ) => a + 1 chia hết cho 2 => T chia hết cho 2
-Chứng minh T chia hết cho 3: Có 3 trường hợp
+Nếu a chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 1 => a + 2 chia hết cho 3 => T chia hết cho 3
+Nếu a chia 3 dư 2 => a + 1 chia hết cho 3 => T chia hết cho 3
2 và 3 nguyên tố cùng nhau
=> T chia hết cho 2.3 = 6
#)Giải :
a) Vì trong hai số tự nhiên liên tiếp luôn có 1 số chia hết cho 2 => Tích đó chia hết cho 2
b) Gọi ba số tự nhiên liên tiếp là a, a+1, a+2 ( a thuộc N )
Tích của chúng là : B = a x (a+1) x (a+2)
Vì trong 3 số tự nhiên liên tiếp luôn có một số chia hết cho 2
Ta chứng minh tích B chia hết cho 2 : Gồm 2 trường hợp :
+) Trường hợp 1 : a chia hết cho 2 ( a là số chẵn ) => B chia hết cho 2
+) Trường hợp 2 : a chia 2 dư 1 ( a là số lẻ ) => a + 1 chia hết cho 2 => B chia hết cho 2
Vậy tích B chia hết cho 2 (1)
Tiếp tục chứng minh tích B chia hết cho 3 : Gồm 3 trường hợp :
+) Trường hợp 1 : a chia hết cho 3 => B chia hết cho 3
+) Trường hợp 2 : a chia 3 dư 1 => a + 2 chia hết cho 3 => B chia hết cho 3
+) Trường hợp 3 : a chia 3 dư 2 => a + 1 chia hết cho 3 => B chia hết cho 3
Vậy tích B chia hết cho 3 (2)
Và vì ( 2;3 ) = 1 suy ra B chia hết cho 2 x 3 = 6
Vậy tích của 3 số tự nhiên liên tiêp chia hết cho 6
Chứng minh là
a)trong ba số tự nhiên liên tiếp có 1 số chia hết cho 3
b)tích của 2 số tự nhiên liên tiếp bao giờ cũng là 1 số chẵn
c) tích hai số chẵn liên tiếp chia hết cho 8