CMR pt sau có vô số nghiệm nguyên: \(\left(x+y+z\right)^2=x^2+y^2+x^2\)
CMR pt sau vô nghiệm với x,y,z nguyên dương và z>1 : (x+1)2+(x+2)2+...+(x+99)2=yz
cmr pt sau vô nghiệm,với x,y,nguyên dương : x2+x=y2+2y
x2+x=y2+2y=>x2+x+1=(y+1)2
=>x2+x+1 là chính phương
Mà x2<x2+x+1<(x+1)2
=> pt vô nghiệm
Đây chỉ là mình viết vắn tắt thôi, bạn tự thêm vào cho đầy đủ nhé
cmr pt sau vô nghiệm,với x,y,nguyên dương : x2+x=y2+2y
giải pt nghiệm nguyên sau : \(6\left(y^2-1\right)+3\left(x^2+y^2z^2\right)+2\left(z^2-9x\right)=0\)
\(\left\{{}\begin{matrix}x+y+\left(m+1\right)z=2\\3x+4y+2z=m+1\\2x+3y-z=1\end{matrix}\right.\). Tìm m để pt vô số nghiệm
Lần lượt lấy pt (3) trừ 2 lần pt (1) và pt (2) trừ 3 lần pt (1) ta được:
\(\left\{{}\begin{matrix}y-\left(2m+3\right)z=-3\\y-\left(3m+1\right)z=m-3\end{matrix}\right.\)
Hệ đã cho có vô số nghiệm khi và chỉ khi:
\(\dfrac{1}{1}=\dfrac{3m+1}{2m+3}=\dfrac{m-3}{-3}\) (ko tồn tại m thỏa mãn)
Vậy ko tồn tại m để hệ có vô số nghiệm
cmr pt sau k có nghiệm nguyên:
x^2 + y^2 + z^2 = 1999
thi xong hsg giỏi rùi , đngư bài lên làm j cho nặng sv
Cho hệ pt \(\hept{\begin{cases}mx+\left(4-m\right)y=3\\3x+\left(m-2\right)y=m\end{cases}}\) Tìm giá trị của m để hệ pt có:
a) Nghiệm là (-2;1)
b) vô số nghiệm
c) x>0, y>0
d) x nguyên, y nguyên
\(\left\{{}\begin{matrix}x+y-z=1\\2x+3y+mz=3\\x+my+3z=2\end{matrix}\right.\). Tìm m để pt vô nghiệm
Lần lượt lấy pt (3) trừ pt (1) và pt (2) trừ 2 lần pt (1) ta được:
\(\left\{{}\begin{matrix}\left(m-1\right)y+4z=1\\y+\left(m+2\right)z=1\end{matrix}\right.\)
Hệ đã cho vô nghiệm khi:
\(\dfrac{1}{m-1}=\dfrac{m+2}{4}\ne\dfrac{1}{1}\)
\(\Leftrightarrow m=-3\)
tìm nghiệm nguyên
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\) = 1
Tìm nghiệm nguyên dương:
\(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}=3\)
Câu 2/
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)
Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)
Xét \(x^2,y^2,z^2\ge1\)
Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)
\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)
\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)
Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)
Cộng (1), (2), (3) vế theo vế ta được
\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)
Dấu = xảy ra khi \(x^2=y^2=z^2=1\)
\(\Rightarrow\left(x,y,z\right)=?\)
Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có
\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)
\(\Leftrightarrow x^4=3\left(l\right)\)
Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)
Bài 2/
Ta có: \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)
Vậy phương trình không có nghiệm nguyên dương.
Em mới học lớp 5 thôi nên em không biết cái gì
~~~ Chúc chị học giỏi ~~~