tính nhanh giá trị biểu thức a biết : A =1+3/15+3/35+3/63+3/99+3/143
1.tính nhanh giá trị biểu thức biết :A=1+3/15+3/35+3/63+3/99+3/143
2.cho m =999....999;n=777...77(100 chữ số 9;100 chữ số 7),tính tổng các chữ số của m*n
tính nhanh
A=1+ 3/15 + 3/35 + 3/63 + 3/99 + 3/143
Ai nhanh mình tick đúng nữa nha
Đặt \(B=\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}\)
\(\Leftrightarrow B=\frac{3}{3.5}+\frac{3}{5.7}+\frac{3}{7.9}+\frac{3}{9.11}+\frac{3}{11.13}\)
\(\Leftrightarrow2B=3\left(\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}+\frac{2}{11.13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(\Leftrightarrow2B=3\left(\frac{1}{3}-\frac{1}{13}\right)=1-\frac{3}{13}=\frac{10}{13}\)
\(\Leftrightarrow A=1+\frac{3}{15}+\frac{3}{35}+\frac{3}{63}+\frac{3}{99}+\frac{3}{143}=1+\frac{10}{13}=\frac{23}{13}\)
Tính nhanh giá trị của biểu thức A:1+3/15+3/35+3/63+3/99+3/143
Tính giá trị biểu thức:
A= \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
Ta có: \(A=\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(\Leftrightarrow A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
\(\Rightarrow2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+\frac{2}{9.11}\)
\(\Rightarrow2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
\(\Rightarrow2A=1-\frac{1}{11}=\frac{10}{11}\)
\(\Rightarrow A=\frac{10}{11}:2=\frac{5}{11}\)
Vậy \(A=\frac{5}{11}\)
A = \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
A = \(\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
A = \(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}\)
A = \(1-\frac{1}{11}\)
A = \(\frac{10}{11}\)
A = \(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+\frac{1}{63}+\frac{1}{99}\)
\(A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)
A = \(\frac{1}{2}.\left(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right)\)
A = \(\frac{1}{2}.\left(1-\frac{1}{11}\right)\)
A = \(\frac{1}{2}.\frac{10}{11}=\frac{1}{11}\)
Tính nhanh và hợp lí:
A=1/3+1/15+1/35+1/63+1/99+1/143+1/180.
A=1/1.3 + 1/3.5 + 1/5.7 + 1/7.9 + 1/9.11 + 1/11.13 + 1/13.15
A=1/1 - 1/3 +1/3 - 1/5 +1/5 -1/7+......+1/13 - 1/15
A=1 - 1/15
A=1/14
1/3+1/15+1/35+1/63+1/99+1/143+1/180=1/1.3+1/3.5+1/5.7+1/7.9+1/9.11+1/11.13+1/13.15
=1/2.(1-1/3+1/3-1/5+1/5-1/7+1/7-1/9+.....+1/13-1/15)
=1/2.(1-1/15)
=1/2.14/15
=7/15
chúc học tốt
Tính nhanh
a, S= \(\dfrac{1}{3}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{35}\) + \(\dfrac{1}{63}\) + \(\dfrac{1}{99}\) + \(\dfrac{1}{143}\)
b, A = \(\dfrac{1}{3}\) + \(\dfrac{1}{6}\) + \(\dfrac{1}{10}\) + \(\dfrac{1}{15}\) + \(\dfrac{1}{21}\) + \(\dfrac{1}{28}\)
c, H =\(\dfrac{4047991-2010x2009}{4050000-2011x2009}\)
d, T = \(\dfrac{2009x20010+2000}{2011x2010-2020}\)
e, P = \(\dfrac{7589-80,5x69,3}{7485,05-79x69,3}\)
f, B = 5,1 x 42,2 + 1,7 x 448 x 3 - 0,15 x 700
Giúp mình với
a=78/35
b=22/12
c=1/1
d=40202090/4040090
e=1,24025667172...
f=871,82
ko biết đúng ko [0_0'] hihi
tính nhanh:
1/3 + 13/15 + 33/35 + 61/63 + 97/99 + 141/143
\(\frac{1}{3}+\frac{13}{15}+\frac{33}{35}+\frac{61}{63}+\frac{97}{99}\)\(+\frac{141}{143}\)
\(=\left(1-\frac{2}{3}\right)+\left(1-\frac{2}{15}\right)\)\(+\left(1-\frac{2}{35}\right)+\left(1-\frac{2}{63}\right)\)\(+\left(1-\frac{2}{99}\right)+\left(1-\frac{2}{143}\right)\)
\(=\left(1+1+1+1+1+1\right)-\)\(\left(\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+\frac{2}{63}+\frac{2}{99}+\frac{2}{143}\right)\)
\(=6-\)\(\left(\frac{2}{1\times3}+\frac{2}{3\times5}+\frac{2}{5\times7}+\frac{2}{7\times9}+\frac{2}{9\times11}+\frac{2}{11\times13}\right)\)
\(=6-\)\(\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+\frac{1}{9}-\frac{1}{11}+\frac{1}{11}-\frac{1}{13}\right)\)
\(=6-\left(1-\frac{1}{13}\right)\)
\(=6-\frac{12}{13}\)
\(=\frac{66}{13}\)
1. tính nhanh
1/3+1/15+1/25+1/35+1/63+1/99+1/143
giúp mình với
\(\dfrac{1}{3}+\dfrac{1}{15}+\dfrac{1}{25}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)
\(=\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+\dfrac{2}{5\cdot7}+\dfrac{2}{7\cdot9}+\dfrac{2}{9\cdot11}+\dfrac{2}{11\cdot13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-...+\dfrac{1}{11}-\dfrac{1}{13}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\left(1-\dfrac{1}{3}\right)\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{2}{3}\cdot\dfrac{1}{2}+\dfrac{1}{25}\)
\(=\dfrac{1}{3}+\dfrac{1}{25}\)
\(=\dfrac{28}{75}\)
Giá trị biểu thức:?
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+\dfrac{61}{63}+\dfrac{97}{99}\)
\(\dfrac{1}{3}+\dfrac{13}{15}+\dfrac{33}{35}+\dfrac{61}{63}+\dfrac{97}{99}\)
\(=\left(1-\dfrac{2}{3}\right)+\left(1-\dfrac{2}{15}\right)+\left(1-\dfrac{2}{35}\right)+\left(1-\dfrac{2}{63}\right)+\left(1-\dfrac{2}{99}\right)\)
\(=\left(1+1+1+1+\right)-\left(\dfrac{2}{3}+\dfrac{2}{15}+\dfrac{2}{35}+\dfrac{2}{63}+\dfrac{2}{99}\right)\)
\(=5-\left(\dfrac{2}{1.3}+\dfrac{2}{3.5}+\dfrac{2}{5.7}+\dfrac{2}{7.9}+\dfrac{2}{9.11}\right)\)
\(=5-\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{9}-\dfrac{1}{11}\right)\)
\(=5-\left(1-\dfrac{1}{11}\right)\)
\(=5-\dfrac{10}{11}\)
\(=\dfrac{45}{11}\)