Rút gọn:
M = \(\left(1+\frac{a}{a^2+1}\right)\div\left(\frac{1}{a-1}-\frac{2a}{a^3-a^2+a-1}\right)\)
Rút gọn A = \(\left[\frac{\left(a-1\right)^2}{\left(a-1\right)^2+3a}+\frac{2a^2-4a-1}{a^3-1}+\frac{1}{a+1}\right]:\frac{2a}{3}\)
\(=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{\left(a-1\right)\left(a^2+a+1\right)}+\dfrac{1}{a-1}\right]:\dfrac{2a}{3}\)
\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}\)
\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{3}{2a}=\dfrac{3}{2a}\)
Rút gọn biểu thức:
a) \(\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab}+\sqrt{a}}{\sqrt{ab}-1}\right)\div\left(\frac{\sqrt{a}+1}{\sqrt{ab}+1}+\frac{\sqrt{ab+\sqrt{a}}}{\sqrt{ab}-1}+1\right)\)
b) \(1+\left(\frac{2a+\sqrt{a}-1}{1-a}-\frac{2a\sqrt{a}-\sqrt{a}+a}{1-a\sqrt{a}}\right)\left(\frac{a-\sqrt{a}}{2\sqrt{a}-1}\right)\)
M=\(\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
1. tìm ĐKXĐ
2. Rút gọn
3.Tìm GTLN
Cho :\(A=\frac{1}{x\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}+\frac{1}{x+3};B=\frac{a}{x\left(x+a\right)}+\frac{a}{\left(x+a\right)\left(x+2a\right)}+\frac{a}{\left(x+2a\right)\left(x+3a\right)}+\frac{1}{x+3a}\)CMR : A = B
CHO BIỂU THỨC:
M = \(\left[\frac{3\left(a+2\right)}{a^3+a^2+a+1}+\frac{2a^2-a-10}{a^3-a^2+a-1}\right]:\left[\frac{5}{a^2+1}+\frac{3}{2a+2}-\frac{3}{2a-2}\right]\)
a) rút gọn M
b) nếu a = 2 thì M = ?
c) nếu M = 0 thì a = ?
Cho biểu thức: \(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}\)
a)Rút gọn A
b) Tìm giá trị của a để biểu thức A đạt giá trị lớn nhất.
a) \(ĐK:a\ne1;a\ne0\)
\(A=\left[\frac{\left(a-1\right)^2}{3a+\left(a-1\right)^2}-\frac{1-2a^2+4a}{a^3-1}+\frac{1}{a-1}\right]:\frac{a^3+4a}{4a^2}=\left[\frac{a^2-2a+1}{a^2+a+1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}\)\(=\left[\frac{a^3-3a^2+3a-1}{a^3-1}-\frac{1-2a^2+4a}{a^3-1}+\frac{a^2+a+1}{a^3-1}\right].\frac{4a^2}{a^3+4a}=\frac{a^3-1}{a^3-1}.\frac{4a}{a^2+4}=\frac{4a}{a^2+4}\)
b) Ta có: \(a^2+4\ge4a\)(*)
Thật vậy: (*)\(\Leftrightarrow\left(a-2\right)^2\ge0\)
Khi đó \(\frac{4a}{a^2+4}\le1\)
Vậy MaxA = 1 khi x = 2
•๖ۣۜIηεqυαℓĭтĭεʂ•ッᶦᵈᵒᶫ★T&T★ Idol cho em hỏi là, cái chỗ \(\left(a-2\right)^2\ge0\) thì tại sao Khi đó: \(\frac{4a}{a^2+4}\le1\)
Mong Idol pro giải thích hộ em chỗ này :((
À dạ thôi oke, em hiểu rồi((:
Rút gon \(\left(\frac{2a}{a^2-4}+\frac{1}{2a}-\frac{2}{a+2}\right).\left(1+\frac{a^2+4}{4-a^2}\right)\)
Cho \(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\). Hãy rút gọn M.
\(\text{GIẢI :}\)
ĐKXĐ : \(a\ne\pm1\).
\(M=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a^3-a}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a}{a^2-1}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\left(\frac{a^2}{a\left(a^2-1\right)}-\frac{1}{a\left(a^2-1\right)}\right):\frac{a^2-2a+1}{a+a^3}\)
\(=\frac{1}{a^2-2a+1}-\frac{a^2-1}{a\left(a^2-1\right)}:\frac{\left(a-1\right)^2}{a\left(1+a^2\right)}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{a\left(a^2-1\right)}\cdot\frac{a\left(a^2+1\right)}{1+a^2}\)
\(=\frac{1}{a^2-2a+1}-\frac{\left(a-1\right)^2}{1+a^2}=\frac{-a^2}{\left(a-1\right)^2}\).
\(A=\frac{x\left(1-x^2\right)^2}{1+x^2}:\left[\left(\frac{1-x^3}{1-x}+x\right)\left(\frac{1+x^3}{1+x}-x\right)\right]\)
a) Rút gọn A
b) Tìm A khi \(x=-\frac{1}{2}\)
c) Tìm x để 2A=1