Tính:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(\frac{x}{1.2}+\frac{x}{2.3}+\frac{x}{3.4}+...+\frac{x}{1999.2000}\) =1. Tìm x
\(\Leftrightarrow x.\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{1999}-\frac{1}{2000}\right)=1\)
\(\Leftrightarrow x.\left(1-\frac{1}{2000}\right)=1\Leftrightarrow x\cdot\frac{1999}{2000}=1\Leftrightarrow x=\frac{2000}{1999}\)
\(ChoS=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
Cần đề Công Nghệ hoặc Ngữ Văn tiếng việt (KT1T)
Tks!!!!
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{1999.2000}\)
\(S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1999}+\frac{1}{2000}\)
\(S=1-\frac{1}{2000}\)
\(S=\frac{1999}{2000}\)
Đây là bài làm của mk :
S = 1/1*2 + 1/2*3 + 1/3*4 + ... + 1/1999 * 2000
=> S = 1 - 1/2 + 1/2 - 1/3 + ... + 1/1999 - 1/2000
=> S = 1 - 1 / 2000
=> S = 2000/2000 - 1/2000 = 1999/2000
Chúc bn học tốt !
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}\)
\(\Leftrightarrow S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)
\(\Leftrightarrow S=1-\frac{1}{2000}\)
\(\Leftrightarrow S=\frac{1999}{2000}\)
CMR:\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1999.2000}< \frac{3}{4}\)
Giúp mik vs !
ai làm trước mik tick cho.
=1/1-1/2+1/2-1/3+1/3-1/4+.........+1/1999-1/2000
=1/1-1/2000
=1999/2000<3/4
Bài này hình như sai đề, kết quả khi tình ra dc là 1999/2000 làm sao nhỏ hơn 3/4 dc bạn
theo bài ra suy ra :
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{1999}-\frac{1}{2000}\)
= \(1-\frac{1}{2000}=\frac{1999}{2000}>\frac{3.500}{4.500}=\frac{1500}{2000}\)
TRÁI VỚI ĐỀ BÀI
Tính\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+\frac{1}{5\cdot6}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}\)
\(=1-\frac{1}{6}\)
\(=\frac{5}{6}\)
1/1.2+1/2.3+1/3.4+1/4.5+1/5.6
=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6
=1-1/6
=5/6
1/1 - 1/2+1/2 -1/3+1/3 - 1/4+1/4 - 1/5+1/5 - 1/6
=1-( -1/2+1/2+-1/3+1/3+-1/4+1/4+-1/5+1/5)-1/6
=1 - 1/6
=6/6 - 1/6
=5/6
Tính : \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{99.100}\)
\(5x-5x\)
\(????????\)
\(\text{Bn mún hỏi dj v~~~~}\)
\(5x-5x=0\)
~~~~~~~~~~~
Tính
\(\frac{1}{1.2}-\frac{1}{2.3}-\frac{1}{3.4}-\frac{1}{4.5}-...-\frac{1}{9.10}\)
\(=\frac{1}{1.2}-\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{9.10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\left(\frac{1}{2}-\frac{1}{10}\right)\)
\(=\frac{1}{2}-\frac{1}{2}+\frac{1}{10}\)
\(=\frac{1}{10}\)
(1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-......+1/9-1/10)
1-1/10=9/10
nhớ cho mk
a)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}\)
b)\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
c)\(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
a) = 1-1/2+1/2-1/3+1/3-1/4
= 1-1/4=3/4
b)=1-1/2+1/2-1/3+1/3-1/4+...+1/2016-1/2017+1/2017-1/2018
=1-1/2018=2017/2018
c)=1/2-1/5+1/5-1/8+1/8-1/11+1/2009-1/2012+1/2012-1/2015
= 1/2-1/2015=2015/4030-2/4030=2013/4030
a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=1-\frac{1}{4}=\frac{3}{4}\)
b) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2017.2018}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017-2018}\)
\(=1-\frac{1}{2018}\)
\(=\frac{2017}{2018}\)
c) \(\frac{3}{2.5}+\frac{3}{5.8}+\frac{3}{8.11}+...+\frac{3}{2012.2015}\)
\(=3\left(\frac{1}{2.5}+\frac{1}{5.8}+\frac{1}{8.11}+...+\frac{1}{2012.2015}\right)\)
\(\Leftrightarrow\frac{3}{2}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{11}+...+\frac{1}{2012}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2015}\right)\)
\(=\frac{3}{2}.\frac{2013}{4030}\)
\(=\frac{6039}{8060}\)
]\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)
Tính
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
Ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\)
\(=\)\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=\)\(1-\frac{1}{100}\)
\(=\)\(\frac{99}{100}\)
Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}=\frac{99}{100}\)
Chúc bạn học tốt ~
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{99\cdot100}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}=\frac{99}{100}\)
ĐÚNG 100%
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.........+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)
Tính :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+..........+\frac{1}{99.100}\)
= 1 . 1/2 + 1/2 . 1/3 + ... + 1/99 . 1/100
= 1 . 1/100
= 1/100
SAI thi mai len bao sai cho nao nha !!!!
\(A=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+..+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{100}{100}-\frac{1}{100}\)
\(A=\frac{99}{100}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{99}-\frac{1}{100}\)
\(=1-\frac{1}{100}\)
\(=\frac{99}{100}\)