Tìm A ?
\(\frac{-x^2+2xy-y^2}{x+y}=\frac{A}{y^2x^2}\)
CMR
a) \(\frac{2x^2+3xy+y^2}{2x^3+x^2y-2xy^2-y^3}\)=\(\frac{1}{x-y}\)
b) \(\frac{x^2y-2xy^2+y^3}{2x^2-xy-y^2}\)=\(\frac{y-\left(x-y\right)}{2x+y}\)
c) \(\frac{4x^2-4xy+y^2}{y^3-6y^2x+12yx^2-8x}=\frac{-1}{2x-y}\)
Giúp mình với ạ!!! ai trả lời nhanh mình tick luôn nhé
a, \(\frac{2x^2-x}{x^2+x+1}+\frac{x^3-2x^2}{x^2+x+1}+\frac{x-1}{x^2+x+1}\)
b, \(\frac{2x+y}{x\left(y^2-x\right)}-\frac{2x-y}{x\left(y^2-x\right)}\)
c, \(\frac{4}{x+2}+\frac{3}{x-2}+\frac{-5-2}{x^2-4}\)
d, \(\frac{1-2x}{2x}+\frac{2x}{2x-1}+\frac{1}{2x-4x^2}\)
e, \(\frac{1}{x-y}+\frac{3xy}{y^3-x^3}+\frac{x-y}{x^2+xy+y^2}\)
f, \(\frac{3}{x^2+2xy+y^2}+\frac{4}{2xy-x^2-y^2}+\frac{5}{x^2-y^2}\)
Với x,y thỏa mãn \(3x^2+y^2+2x-2y=0\) hãy tìm các giá trị nguyên dương của biểu thức A
\(A=\frac{4xy}{y^2-x^2}:\left(\frac{1}{y^2-x^2}+\frac{1}{y^2+2xy+x^2}\right)\)
Bài 1: Tìm x,y:
a) |x - 1| + |x + 3| = 4
b) |2x + 3| + |2x - 1| = \(\frac{8}{2\left(y-5\right)^2+2}\)
c) |x + 3| + |x + 1| = \(\frac{16}{\left|y-2\right|+\left|y+2\right|}\)
Bài 2: Tìm số nguyên x,y, biết:
a) \(\frac{1}{x}+\frac{1}{y}=\frac{1}{5}\)
b) \(x^2-2xy+y=0\)
a)Áp dụng bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:
\(\left|x-1\right|+\left|3+x\right|=\left|1-x\right|+\left|3+x\right|\ge\left|1-x+3+x\right|=4\)
\(\Rightarrow VT\ge VP."="\Leftrightarrow-3\le x\le1\)
b) \(\hept{\begin{cases}\left|2x+3\right|+\left|2x-1\right|=\left|2x+3\right|+\left|1-2x\right|\ge4\\\frac{8}{2\left(y-5\right)^2+2}\le4\end{cases}}\Leftrightarrow VT\ge VP."="\Leftrightarrow\hept{\begin{cases}-\frac{3}{2}\le x\le\frac{1}{2}\\y=5\end{cases}}\)
c Tương tự b
2) \(\frac{1}{x}+\frac{1}{y}=5\Leftrightarrow x+y-5xy=0\Leftrightarrow5x+5y-25xy=0\Leftrightarrow5x\left(1-5y\right)-\left(1-5y\right)=-1\)
\(\Leftrightarrow\left(5x-1\right)\left(1-5y\right)=-1\)
Xét ước
Cho biểu thức \(A=\frac{4xy}{x^2-y^2}:\left(\frac{1}{x^2-y^2}+\frac{1}{x^2+2xy+y^2}\right)\). Nếu x,y là các số thực thỏa mãn \(x^2+3y^2+2x-2y=1\). Tìm các giá trị nguyên dương của A.
Biết \(\frac{7}{2}x^2-2xy-4x-y+\frac{13}{2}=A\left(x-2\right)^2+B\left(2x-y+1\right)^2\)
Tìm A và B
cho x>0 , y>0 , x+y =2012
a) Tìm Max \(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b) Tìm Min \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\)
\(a)\) Có \(2012=x+y\ge2\sqrt{xy}\)\(\Leftrightarrow\)\(xy\le1006^2\)
\(B=\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}=\frac{2\left(x^2+2xy+y^2\right)}{x^2+2xy+y^2}+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\)
\(\le2+\frac{4.1006^2}{2012^2}=2\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
\(b)\) \(C=\left(1+\frac{2012}{x}\right)^2+\left(1+\frac{2012}{y}\right)^2\ge\left[2+2012\left(\frac{1}{x}+\frac{1}{y}\right)\right]^2\ge\left(2+\frac{2012.4}{x+y}\right)^2\)
\(=\left(2+\frac{2012.4}{2012}\right)^2=36\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=1006\)
...
bạn ơi, mik học \(A^2+B^2\ge\left(A+B\right)^2d\text{ấu}"="\) xảy ra <=> \(A.B\ge0\) mà bạn?
Cho x,y >0 và x+y=2015
a, Tìm max của: M= \(\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b, Tìm min của: N= \(\left(1+\frac{2015}{x}\right)^2+\left(1+\frac{2015}{y}\right)^2\)
a Tách \(M=2+\frac{4xy}{x^2+2xy+y^2}=2+\frac{4xy}{\left(x+y\right)^2}\le2+1=3\)
Dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
b,:\(N\ge\frac{\left(1+\frac{2015}{x}+1+\frac{2015}{y}\right)^2}{2}=\frac{\left(2+2015\left(\frac{1}{x}+\frac{1}{y}\right)\right)^2}{2}\)
áp dunngj svac =>\(N\ge\frac{\left(2+2015\left(\frac{\left(1+1\right)^2}{x+y}\right)\right)^2}{2}=\frac{\left(2+\frac{2015.4}{2015}\right)^2}{2}=18\)
dấu = xảy ra khi và chỉ khi x=y và x+y=2015 <=>x=y=2015/2
Cho A= \(\left(\frac{2xy}{x^2-y^2}+\frac{x-y}{2x+2y}\right).\frac{2x}{x+y}\)\(+\frac{y}{y-x}+\frac{2-x}{x-y}\)
a, Rút gọn và tính giá trị của A khi x=3;y=1
b, Chứng minh rằng với \(x\ne y\) thì \(A.\frac{x^3-y^3}{2-y}\ge0\)