tìm 2 số x và y biết \(\frac{x}{2}=\frac{y}{3}\) và x-2y= -60
giải giúp mình với nha. thanks
Tìm tỉ số của x và y biết :
\(\frac{2x-y}{2}=\frac{x+2y}{3}\)
Ai làm sớm và nhanh nhất được 2 thích nhé =)). Mình không nói dối đâu.
Thanks và nhớ ghi rõ cách làm nhé
<=> 3( 2x - y ) = 2 ( x + 2y )
<=> 6x - 3y = 2x + 4y
<=> 6x - 2x = 4y + 3y
<=> 4x = 7y
=> \(\frac{x}{y}=\frac{7}{4}\)
Cảm ơn bạn nhiều lắm. Mình sẽ gởi cho bạn 2 thích như đã hứa.
\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}
\)
a) Rút gọn A
b) Tìm tất cả các số nguyên dương của x để y=625 và A<0,2
GIÚP MÌNH VỚI NHA....MÌNH CẦN LẮM, CẢM ƠN TRƯỚC <3
9 T I C H sai buồn
\(A=\frac{\sqrt{x^3}}{\sqrt{xy}-2y}-\frac{2x}{x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}}.\frac{1-x}{1-\sqrt{x}}..\)
nhờ vào năng lực rinegan tối hậu của ta , ta có thể dễ dàng nhìn thấy mẫu chung
\(x+\sqrt{x}-2\sqrt{xy}-2\sqrt{y}=\sqrt{x}\left(\sqrt{x}-2\sqrt{xy}\right)+\left(\sqrt{x}-2\sqrt{y}\right)=\left(\sqrt{x}-2\sqrt{y}\right)\left(\sqrt{x}+1\right)\)
\(A=\frac{\sqrt{x^3}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}-\frac{2x\left(x-1\right)}{\left(\sqrt{x}-2\sqrt{y}\right)\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)}.\)
\(\left(1+\sqrt{x}\right)\left(1-\sqrt{x}\right)=1-x\)
\(A=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\sqrt{x}-2x\sqrt{y}}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x\left(\sqrt{x}-2\sqrt{y}\right)}{\sqrt{y}\left(\sqrt{x}-2\sqrt{y}\right)}=\frac{x}{\sqrt{y}}\)
b) thay y=625 vào ta được
\(\frac{x}{\sqrt{625}}=\frac{x}{25}< 0.2\Leftrightarrow x< 5\)
vậy \(0< x< 5\)
Tìm x , y ,z biết \(-3x=2y=5z\) và \(\frac{1}{x}+\frac{2}{y}=\frac{3}{z}=-32\)
6h hết hạn , cố gắng giúp , thanks
BÀI 1) TÌM 2 SỐ X,Y BIẾT \(\frac{x}{5}=\frac{y}{3}\) VÀ \(x^2-y^2=4\left(x,y>0\right)\)
BÀI 2) TÌM CÁC SỐ X,Y,Z BIẾT RẰNG \(\frac{1}{2}.x=\frac{2}{3}.y=\frac{3}{4}.z\) VÀ X-Y=15
GIÚP MÌNH VS AI NHANH DC 4 TÍCH NHA
Tìm các số tự nhiên x , y biết :
\(\frac{4^x}{2^{x+y}}=8\) và \(\frac{9^{x+y}}{3^{5y}}=243\)
MINA GIÚP NHA THANKS NHÌU
\(\frac{9^{x+y}}{3^{5y}}=243\Leftrightarrow\frac{9^{x+y}}{3^{5y}}=\frac{9^{4+1}}{3^{5\cdot1}}\Leftrightarrow x=4,y=1..\)
vậy x=4.y=1
Ai giúp mk đi làm ơn đó mai mk phải nộp rùi T_T
\(\frac{4^x}{2^{x+y}}=8\Leftrightarrow\frac{4^x}{2^{x+y}}=\frac{4^4}{2^{4+1}}\Rightarrow x=4,y=1.\)
vậy x=4 y=1
Tìm x,y biết: -3x = 2y, và x - y = 6
a. Cho 6/x = -3/2, tìm x
b. tìm x, y biết: -3x = 2y, và x - y= 6
nhanh giúp mình nha !!
`-3x=2y `
`=> x/2 = -y/3 `
AD t/c của dãy tỉ số bằng nhau ta có
`x/2 =-y/3 = (x-y)/(2+3) = 6/5`
`=>{(x=2*6/5 = 12/5),(y=-3*6/5 =-18/5):}`
a) `6/x =-3/2`
`=>x =6 :(-3/2) = 6*(-2/3)=-4`
`b)`\(-3x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{-3}\)
Áp dụng t/c của DTSBN , ta đc :
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{x-y}{2+3}=\dfrac{6}{5}\\ \Rightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=\dfrac{6}{5}\\\dfrac{y}{-3}=\dfrac{6}{5}\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{12}{5}\\y=-\dfrac{18}{5}\end{matrix}\right. \)
`a)`
`6/x=-3/2`
`x=6:(-3/2)`
`x=6*(-2/3)`
`x=-4`
a, \(\dfrac{6}{x}=-\dfrac{3}{2}\)
\(\Rightarrow3x=6.\left(-2\right)\)
\(\Rightarrow3x=-12\)
\(\Rightarrow x=-\dfrac{12}{3}\)
=>x=-4
b, \(+\left(-3\right)x=2y\Rightarrow\dfrac{x}{2}=\dfrac{y}{-3}\)
+x-y=6
+Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{2}=\dfrac{y}{-3}=\dfrac{x-y}{2-\left(-3\right)}=\dfrac{6}{5}\)
Suy ra \(\dfrac{x}{2}=\dfrac{6}{5}\Rightarrow x=\dfrac{6}{5}.2\Rightarrow x=\dfrac{12}{5}\)
\(\dfrac{y}{-3}=\dfrac{6}{5}\Rightarrow y=\dfrac{6}{5}.\left(-3\right)=-\dfrac{18}{5}\)
Vậy \(x=\dfrac{12}{5};y=-\dfrac{18}{5}\)
CÁC BẠN ƠI GIÚP MÌNH VỚI
1) TÍNH \(\frac{1}{X}-\frac{1}{Y}\)BIẾT X;Y \(\ne\)0 VÀ X-Y=XY
2) TÌM X;Y ;Z BIẾT ( X - \(\frac{1}{2}\)) * (Y + \(\frac{1}{3}\) ) * (Z - 2 ) = 0 VÀ X+2=Y+3=Z+4
BẠN NÀO BIẾT GIÚP MÌNH NHA MÌNH XIN CẢM ƠN NHẤT QUẢ ĐẤT LUÔN!!!
1) 1/x-1/y
=y/xy-x/xy
=y-x/xy
= - (x-y)/xy
= -1 (vì x-y=xy)
2)
(x- 1/2)*(y+1/3)*(z-2)=0
=> x-1/2 = 0 hoac y+1/3=0 hoac z-2=0
th1 :x-1/2=0 => x=1/2
x+2=y+3=z+4
mà x=1/2 => y= -1/2 ; z=-3/2
th2: y+1/3=0
th3 : z-2=0
(tự làm nha)
1) Với x,y khác 0, Ta có
\(\frac{1}{x}-\frac{1}{y}=\frac{y-x}{xy}=-\left(\frac{x-y}{xy}\right)=-\left(\frac{xy}{xy}\right)=-1\)
Vậy \(\frac{1}{x}-\frac{1}{y}=-1\)
2) Ta có:
\(\left(x-\frac{1}{2}\right)\left(y+\frac{1}{3}\right)\left(z-2\right)=0\)
Trường hợp 1: x - 1/2 = 0 => x = 1/2 \(\Rightarrow\hept{\begin{cases}y=\frac{1}{2}+2-3=-\frac{1}{2}\\z=\frac{1}{2}+2-4=-\frac{3}{2}\end{cases}}\)
Trường hợp 2: y + 1/3 = 0 => y = -1/3 \(\Rightarrow\hept{\begin{cases}x=-\frac{1}{3}+3-2=\frac{2}{3}\\z=-\frac{1}{3}+3-4=-\frac{4}{3}\end{cases}}\)
Trường hợp 3: z - 2 = 0 => z = 2 \(\Rightarrow\hept{\begin{cases}x=2+4-2=4\\y=2+4-3=3\end{cases}}\)
Vậy......
CÁM ƠN NHỮNG NGƯỜI BẠN NHẤT QUẢ ĐẤT NÀY LUN
1. tìm x, y biết:
\(\frac{1+3y}{12}=\frac{1+5y}{5x}=\frac{1+7y}{4x}\)
2. Cho \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\)
Tìm giá trị của: A=\(\frac{x-y+z}{x+2y-z}\)
Giúp mình với, mai mình học rùi. THanks các ban nhìu
Bài 1:
Giải:
Ta có: \(\frac{1+3y}{12}=\frac{1+7y}{4x}=\frac{1+1+3y+7y}{12+4x}=\frac{2+10y}{2\left(6+2x\right)}=\frac{2\left(1+5y\right)}{2\left(6+2x\right)}=\frac{1+5y}{6+2x}=\frac{1+5y}{5x}\)
+) Xét \(1+5y=0\Rightarrow y=\frac{-1}{5}\Rightarrow1+5y=0\) ( loại )
+) Xét \(1+5y\ne0\Rightarrow6+2x=5x\)
\(\Rightarrow5x-2x=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
Mà \(\frac{1+3y}{12}=\frac{1+5y}{5x}\)
\(\Rightarrow\frac{1+3y}{12}=\frac{1+5y}{10}\)
\(\Rightarrow10\left(1+3y\right)=12\left(1+5y\right)\)
\(\Rightarrow10+30y=12+60y\)
\(\Rightarrow10-12=60y-30y\)
\(\Rightarrow-2=30y\)
\(\Rightarrow y=\frac{-1}{15}\)
Vậy \(x=2,y=\frac{-1}{15}\)
tìm x,y,z
\(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}\)và xyz=108
thanks các bn trc nha
suy ra
6xyz / 24 = xyz / 4 = 108/4 = 27
x=54
y=81/2
z=36
Nhân các vế lại với nhau :
=>6xyz / 24 = xyz / 4 = 108/4 = 27
x=54
y=81/2
z = 27x4:3=36
Vậy .................
Đặt \(\frac{x}{2}=\frac{2y}{3}=\frac{3z}{4}=k\)
\(\Rightarrow\hept{\begin{cases}x=2k\\2y=3k\Rightarrow y=\frac{3k}{2}\\3z=4k\Rightarrow x=\frac{4k}{3}\end{cases}}\)
Mà \(xyz=180\)
\(\Rightarrow2k.\frac{3k}{2}.\frac{4k}{3}=180\)
\(\Rightarrow2k.\frac{3}{2}k.\frac{4}{3}k=180\)
\(\Rightarrow k^3.4=180\)
\(\Rightarrow k^3=\frac{180}{4}=27\)
\(\Rightarrow k=\sqrt[3]{27}=3\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=\frac{3.3}{2}=4,5\\z=\frac{4.3}{3}=4\end{cases}}\)
Vậy \(x=6;y=4,5;z=4\)